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Summary: Among the many constrained shortest-route problems are only

few for which time-dependent restricitons are taken into consideration.
Instead of determining a shortest route through a network with travel
times depending on the departure time and with additional time-depen-
dent constraints on movement and parking a dual problem and an algorithm
for solving this dual program is considered giving sufficient informa-
tien for the route problem. A comparison with known time-dependent
shortest-route formulations is made.

Introduction

Shortest-route problems (with constraints) and algorithms for determi-
ning such routes have successfully been used for the formulation and
solution of lots of network problems (see for example (6],(8],[9),[14],
[16],[19]). Naturally, attempts have been made to take into considera-
tion the known results and methods of determining shortest routes with-
out additional restrictions (For unconstrained shortest-route (u.s.r.)
problems see for example [1],[5],[6] and the references of [19].).
Introductory, some of the most important (but not always very efficient)
attempts are mentioned.

Let G(N,A,l) be a finite, directed graph where N denotes the nodes,
ASNXN~U{(i,1) [1eN} the (directed) arcs and lc R*P the length of the
arcs. If G is connected, it is also called a network. A route

R(p,q) = {pzno,n.l,...,nm = q} from p to q, p,geN, is described by the
sequence of nodes which are visited on the way from p to g in the given
order. A(R(p,q)) = [(no,n1)....,(nm_1,nm)} is the arc set belonging to

R(p,q). 1(R(p,q)) = > ; 11' » 1,jeN, is the length of R(p,q).
(i,3)eA(R(p,q)) *J

R(p,p) is called a cycle and positive, negative or zero if its length
1(R(p,p)) is positive, negative or equal to zero (Throughout this paper
all values assigned to the elements of the graph G are assumed nonnega-
tive to avoid negative cycles.). A route R(p,qg) is called simple or
elementary if A(R(p,q)) or R(p,q) consists of distinct elements only.

An intuitive idea is to sort all routes from P to g with respect to

their lengths (l(R1(p,q)){1(R2(P:QJ)€ +es €1(R (p,q))€ ...) and to search
for the minimum value of k for which R, (p,q) will satisfy the additional

*) This research has been supported by Sonderforschungsbereich 72,
University Bonn.
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constraints. If n(i,j,k) , i,jeN, defines the number of routes, among
the k shortest routes from i to g, that begin by going from i to j, the
algorithm has to compute
1( (i,q)) = min 1(i'jpk) , k22
R ¥

where

L(i,j.k) := 11j + 1(Rn(i,j,k—1)+1(j'q)) ¢ k22
describes the length of the deviation (i'j)UA(Rn(i,j,k—1)+1(j'q))
(which corresponds to Rh(i,q) for some hzk) from the k-1 shortest routes
from i to g (The existence of zero-cycles must be avoided by g-pertuba-
ting the l-data.). In most applications one is interested in elementary
solutions (without cycles) (see for example [18] where u.s.r.-problems
have to be determined in subgraphs of the given graph G). Naturally, the
efficiency of all procedures for computing the k shortest (elementary)
routes depends on the network structure and the l-data, but can be re-
commended if k is bounded by a small value such as in planning models
for urban traffic.
There are many other possibilities of applying branch and bound proce-
dures and the dynamic programming technique.
A class of problems which can be solved in this way is that of determi-
ning a shortest (elementary) route from P to g in a graph G(N,A,1l) where
all nodes of a set NCFN must be visited exactly once, abbreviated
(G,p,No,q) (see [15]). Here, too, the possibility of determining such
problems is constrained by the magnitude of %N, as it is apparent from
the well-known traveling-salesman problem (G,p,N~{pl,p) (see [2],[13],
[20]). A dynamic programming solution for the other special case
(G,p,®,9) is due to Bellman [1] himself.
Determining the longest (elementary) route in a graph is another well-
known constrained shortest-route problem which has relations to the
traveling-salesman problem (see [12]). Here, the existence of positive
cycles prohibits the application of u.s.r.-procedures. Additional re-
strictions to exclude routes with (positive) cycles from the set of so-
lutions (such as the subtour-elimination constraints for the traveling-
salesman problem) have to be taken into consideration. Only for project
planning models when the underlying graph G(N,A,l) has no cycles a cri-
tical (longest) route can easily be found determining a u.s.r.-problem
in G(N,A,-1).
A class of problems where a reduction to u.s.r.-problems was successful
is that of determining shortest routes with arc-changing costs (Such
problems arise for example when reloading between different transport
facilities or, in urban traffic, turning to the left or prohibitions of
turning must be taken into consideration.) (see [3],[16}). While in all



former mentioned problems only arcs acA have been assigned lengths la
now additional values

. { Pijk  (@qr3y) €A,

P
e L otherwise

02

with Ao = {(a1,a2)| a, = (i,3), a, = (j,k)}e AxA, have to be considered.
pijk = « indicates a prohibited arc change from (i,3j) to (j,k). Such
problems can be solved interpreting the arcs of G(N,A, 1) as nodes and
the A -arc pairs as arcs of a new graph G(N A 1) with 1 aja, = 1a1 Pa1a2
and applying an u.s.r.-procedure to G where G, advantageously, needs

not to be constructed explicitly (The elementary solutions of & corres-
pond to the simple ones of G, and it can be shown that the subset of
simple routes contains all optimal solutions.).

As the most network problems are formulated from a static viewpoint (as
all ones mentioned up to now) attention is now transferred to problems
with time-dependent constraints. To the first authors who have formula-
ted network problems from a dynamic viewpoint belong Ford/Fulkerson with
their work on maximal dynamic flows (see [7],[8]). They, too, pointed
out that, with much more effort, consideration could be restricted to
the static case introducing a so-called "time-expanded" network. This

is also true for the following discussion on shortest-route problems
with time-dependent constraints. There are some authors who have dealt
with these topics. Cooke/Halsey [4] use dynamic programming, Dreyfus [6]
suggests the Dijkstra [S]-method, Klafszky [17] applies duality prin-
ciples and gives a procedure, which, too, is closely related to paper
[5]+ and recently, Halpern/Priess [11] have considered additional con-
straints of parking in the nodes, Gaul [10] has treated the problem of
computing optimum routes within prescribed time-periods in case of time-
dependent capacities, costs and arc-lengths.

In this paper an algorithm is presented which handles a slightly more
general situation than that solved by [11], if parking constraints are
excluded from consideration corresponding simplifications are pointed
out and a necessary modification of [17] is given. Also, little addi-
tional expenditure is included to lighten the backtracking process of

an optimal route.

Formulation of the Problem

Let the nonnegative integers lij(t}, te'; = {0, 1, wean T}y 1,)E8, de=
note the traversal times from i to j which depend on the departure time t
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from node i. 1 Now, the corresponding length for R(p,q) can be described
by 1(R(p,q)) = _E : s (1(R(p,ny)) + t,) where tis’? is the

(n,,n JEA(R(p,q)) i i+1
: L & 2
waiting time in n;.
Searching for a shortest route within T time-periods means to consider

the triples (R(p,q), a(R(p,q)), d(R(p,q))) where

a(R(p,q)) = (a(ng), ... ,a(n;)) describes the arrival times,

a(R(p,q)) = (d(n)), ... ,d(n _,)) with d(n,)e ¥ the departure times with
d(n;) 2 a(ng) , niER(p.q)~{nm]
a(nol =0

(1)
1(R(p,q))= a(n) el

a(ng) =d(n;_4) + lrli i(d(ni_1)) r =1, vid m

=15
The parking (waiting) time in node ny is d(ni) = a(ni). If no parking
is allowed in node i within the time intervalls [t%k, t;k) grdemillts dhiee (L) 5

where " » " symbolizes the appropriate upper bound, one has the additional

constraints
a(t) ¢ [eX, 2 S a1y = a(w)
1k’ Tax -
i i i
e T D AL g

If no connection from node i to node j is possible at time t let be
lij(t) = MT,

If Olp denotes the set of feasible solutions (R(p,q), a(R(p,q)),
d(R(p,g))) with respect to the constraints (1), (2), the problem is to
find (R, (p,@), a®(R,(p,a)), (R (p,q))) (1£Qp# @ ) so that a’(n)
describes the minimum arrival time at node n. = dg.

The Solution Procedure

Instead of dealing with OtT consider the problem

max b (q)
under the constraints

b(p) =0
(3)
b(j) < min min {1

(t) + tl
(1,3)eA teTy J

i

1)For computational convenience a restriction is made to integer values
(and a discrete measure of time). Also, observation time is constrained,
and there are good reasons that exceeding a given time T is of no in-
terest.
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where T, = {te ¥| 3 R(p,i) with 1(R(p,i)) = t or

1(R(p,i)) 1<t and [r,t)nU[ti'k, t§k> = @},

If #» denotes the set of feasible solutions of (3), one has #+ @, for
Oe & because of lij(tla o

Lemma 1: min a(q) =2 max b(q)

Proof: Either Olp= @ yields min a(g) = += , or for
(R(p,q),a(R(p,q)),d(R(p,q)))e Olm, beh

alg) = a(n) =d(n__.) + 1 (A(n__.)) 2 min { 1 (t) + t}
m m=1 nm_.lq m=1 tl-:'Tr" nm_1q
m=1

2 min min {11 (£) + tl = blq).
(1,9)er teT, q

The following procedure for determining an optimum solution b°e ¥ will
indicate O{T =@ (if bO(q)>'T‘) or construct an optimum route Ro(p,q) -
If NOCN is the set of nodes with known earliest arrival times,

B(N,) e{0,1 PN Gith
(0] ieN
] o
[B(No)] g {

1 otherwise
and a; or v, denotes the set of feasible arrival or departure times for
node i one gets

Algorithm:
Step 1: N = {p}, (b(i) = 0, oy =@, v; =@, VieN)
6y =@ ieM\(p) , &, ={[0], ]}n "}
i(t) = @, ieN, 1’} s=p
Step 2:
2. = uf = {7|t = 1,(8) + ¢, ted }
2,2 : i(1) = i(t)u {s},1ea’ ieN

1
2-3.. [+ = a,ya Y

2.4 : g= min min{'re:ai}- max b(j) ——> yields i,en
ieN JEN

2.5 : b(i) = b(i) +[B(N,)] 4€r  ieN

2.6 : max b(j)>T ? —— stop

JeN
257 1 NO = Nou{io}
2.8 : i =g? —— stop

o]



2.12:

25132

2.14:

In order
rations.
feasible
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L h
6io = {ae¥|aeU[r,0], 'n-:o:io, U[T,H)f\U[t.];:, tmc:}: @} ..Yio

Lo(t) =\ 1o(®) , HEe braplitn 8,

L ORI SO
i L Mow

=]
I

i ?

s = io

repeat step 2

to see how the algorithm works one has to check the single ope-
Step 1 gives the starting conditions. In step 2 in 2.1, 2.3
arrival times are computed where consideration is restricted

to such times which have not served for determining departure times in

2.9; 2.1

If n is the iteration index (for repeating step 2 of the algorithm) it

is shown

Lemma 2:

Computing 2.4 yields e20.

Proof: Because of b.I = 0 and lij(t) 2 0 one has

1

1 1
€' = min min {1ea;} = min {7t =1 (t) + t| ted_ } 20
ieN i 310(1) s
From ¢2 ' = min {tea®"! } - max bn_1(j) it follows
i_(6n-=1) :
o JeN
min {tea® 1} > min {rea®”! } and from
i i iO(n-1)
n s n-1
min {TEGS} = min {TEuio(n 1)] and 2.1
n n=1 n = Wi
min thai} 2 min {Teaiotn-1)] (remember aio(n—1) = a_ = @ because
of 2.12). Thus
£" = min min (15&2} - max b"(5)
ieN JEN
> min{tea™”" } - max BV V1(4) = eV =0
1 .(n=1) 2
o JeEN .
as max bn(j) is always taken on (1) Ng because of
JEN p=1
n-
b" = B(Ng)ap from 2.5.
p=1
Lemma 3: If bed then b + e+B(N)) ed.
Proof: For e! = 0, nothing is to be shown, For e? > 0, only isNg are



of interest. One has

min_ min min {1, (t) + t} 2 min min{Tsag} (4)

1eND (a,i)eA teTy _15N

for otherwise there exists koeng (which takes the minimum of (4) ) and

R(p,ky) with 1(R(p,k )) = t, < min min {teal} . But then there exists a
ieN

node j with A(R(p,ky)) = {A(R(p,3 ), (3 k) } « i eND forces

n B = ;
ty 2 Ttg min {tea;}, a contradiction, but JoeN, forces t = 1(R(p,jg))

because of 1ij(t) 2 0 and the minimality of ko and further backtracking

on R(p,jo) must give a node posNg (because of pENg). a contradiction.
Thus, (4) is valid and

€” = min min {Tsu?} - max b"(§)
1eN JEN
< min_ min min {10:1“:) + t} - max 6™ (5)
isNg (a,i)en teTy Jeh
n n
< min min {1,,(t) + ¢} - b"(1) , V1N

(e,i)er teTy

When performing the described algorithm one can get the following possi-
bilities (for the n-th iteration) :

n+1

e >0, %N oy

= %No Lok (5)

St o sk.Ng'” = %) (6)
e® = o, yz-Ng” o L 7)
e? = o, xwg” = %NO (8)

In view to the criteria 2.6 and 2.8 the best which can happen is (5),
the worst (8).

Lemma 4: If (8) occurs at iteration n there is k(n) S‘#Ng - 1 so that
for iteration n + k(n) (5), (6) or (7) must hold.

Proof: If " = 0 and iC(nJaNg (which means N:+1 = Ng )} there exists

an integer Vo with 1< vns b8 Ng - 1 which is maximal with io(n-u}eNg

and max bn(j)s Y

o, r B = 1,...'\) B
JEN ic;(n W) 4
iO(n—u1) # i (n-uy), O = Hy < Hy S v (9)
because of 2.3 and there must exist an integer kn = 1 that if e"+x =0

n+2 n
and :I.O(n+t) € No = No vy =01 s4a ,kn-1



k_-1
n+k_-1 n
N " AN (i) =9
o o
p==v
n
(as io(n+p1) # i°(n+pz), =N < P4 < Py < kn~1, which follows from (9)
by induction on n) and
n+krl n+kn #
min min{Teui } >max b (3) = max b (3)
n+kn—1 jEN jeN
ieN
9 n+kn-1 -
must hold. Thus, k(n) < k < %‘:NO =E =%No - 1.

Because of (6), a restriction to integer values 2) is necessary to en-
sure the finitness of the algorithm (of course, taking into account
additional difficulties (when determining inf/sup in 2.4) and restric-
tions on the family of functions lij(t) (to ensure convergency of the
algorithm) a continuous version of the problem is possible (see [11] )).
in [11] the lengths of the arcs are of the special form

© tev
11.(t) =
] lij otherwise

where V describes times of forbidden movement in arc (i,j) which does
not take into consideration (as it is done here) that a later departure
from i may yield an earlier arrival at j via arc (i,3j).
If no parking constraints (in the nodes) are considered a simplification,
which yields elementary optimum solutions by waiting in the nodes as
long as the most convenient departure time is at hand, is possible.
This simplified situation is considered in [17], but to maintain fea-
sibility (for the dual problem), the correct formula for € would be
(in notations of [17])

e = min min {y(x,y,u{x) + 0) + 6 + p(x) - u(y)}

XeS,yeT O

In 2.2 and 2.10 the nodes are assigned predecessor nodes to lighten the
backtracking process of an optimum route. An example how the algorithm
works is available in [10], a computer program is under preparation.

2"'Th:I.s is,for computational convenience, assumed in the formulation of
the problem.
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