Reprinted from JOURNAL OF COMBINATORICS, Vol. 3, No. 4, 217-222 (1978)
INFORMATION & SYSTEM SCIENCES Printed in India

Some Structural Properties of Project Digraphs™
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Project digraphs (which are finite, directed, simple, acyclic, weakly
connected graphs with exactly one transmitter and one receiver point) are
of importance, ¢.g., when dealing with scheduling problems. A decom-
position of such digraphs by means of systems of subproject digraphs is
proposed and some structural properties mainly in view to conditions for
routability possibilities of paths are described which are helpful, e.g., in
situations when for projcet planning models stochastic variation of data
impose problems for project duration time estimation.

1. INTRODUCTION

It is known that the problem of finding a minimum decomposition of
a finite partially ordered set into chains, see Dilworth [1] (or antichains,
see Mirsky [6]) has important applications e.g. for scheduling problems
as discussed with consideration to network flow methods in Fulkerson [2].
Adequate models can be described (as done in [2]) in terms of so-called
project digraphs. In this context it should be mentioned that representa-
tion of a partially ordered set by the arc set of a corresponding digraph
(the (strict) order corresponds to the transitive closure of a relation r which
for two arcs xy, X puts x,rx; iff endpoint of x, equals starting point of x;)
can impose the use of dummy arcs; in other words, if the partially ordered
set is not graphically representable in the above mentioned way there
always exists an enlargement of the set together with an enlarged order
(where the restriction of which to the underlying original set coincides with '
the given order) that will do, but how to construct such a graphtheoretical
representation efficiently is a problem of more practical importance and
not considered here.

A decomposition scheme for such project digraphs by means of proper
subproject digraph systems and some structural properties of such de-
compositions are given in this paper. These properties mainly deal with
conditions for the routability of paths which is of interest e.g. for the
consideration of project planning models in situations when stochastic
variation of data impose problems for the estimation of expected project
duration time, see [3].
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218 SOME STRUCTURAL PROPERTIES OF PROJECT DIGRAPHS

2. Proiect DIGRAPHS

For ease of description the notation of Harary [4] and of Harary, Nor-
man and Cartwright [5] is mostly adopted.

A project digraph D, = (¥, X, f) is a finite, directed, simple, acyclic,
weakly connected graph where ¥ = @ denotes the set of points, X the set
of arcs and f= (f', f?) with f': X -V, i =1, 2, the injective incidence
mapping where f(x) resp. f%(x) gives the starting resp. end point of x = X
(an additional notation, sometimes used for arcs x is f1(x)f?(x)) with exactly
two specified points f, r& V, called transmitter, receiver with
x|xeX, PAx)=1}=0,{x|x € X, f'(x) = r} = O*.

For project digraphs there exists at least one bijective mapping called,
(ascending) level-assignment 1: ¥V —{0,1,..., m}, m:= |[¥]— 1, with
¥ EX = 1(f'(x)) < 1(f4x)) (and 1(1) = 0, 1(r) = m), see e.g. [5, p. 267].
For notational convenience the identification ¥ := {0, 1, ..., m} is made,
and it is assumed that the points have been topologically ordered accord-
ing to a level-assignment.

A subgraph Dy = (Vy, X, fi)(i, j € VyC ¥V, X, C X, f;; = f1Xy) is
called subproject digraph, if D, is a project digraph with transmitter /
and receiver j.

The incidence mapping is mostly omitted, to put it more briefly, D,;,
solely, is written. In this case, V(D) resp. X (Dy;) is used to denote the
point resp. arc set of D;;.

Let S C{(i, )| i,j € V, i < j} be the set of points for which subproject
digraphs exist. Subproject digraphs which are maximal with respect to

(i, j) € S are denoted by 5,1 = (VU, X,), hence, in this notation D, is re-
placed by

Dy = (¥, X) (= (Vﬂm: fﬂm))

which is used from now on,

A path P;; (an alternating sequence of points and arcs of the form
I = lg, lofty 1y« «y fn_yy In_yiny iy = j, where the sequence of points consists
of distinct elements only) is a special subproject digraph. (P;))x resp. (PiF,
k € V(P;), denotes the subpath of Py; from ito k resp. k toj. Fora
subproject digraph D;; the set of paths Py belonging to D; is given by
P(Dy)).

Obviously, one has

Lemma L. If Dy = (¥, X;)) is a subproject digraph with transmitter i
and receiver j, then i is a sourcef, jis a sink of Dy;.

*® Acyclic digraphs possessat least one transmitter and one receiver point, see
[4, p. 200].

T A source (sink) is a point basis (point contrabasis) consisting of a single element
see [5, p. 98].
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3. SuBPROJECT DIGRAPH SYSTEMS

Forv» € V, » = 1, consider systems of subproject digraphs of the form
&, = {D,,| D, is subproject digraph, i < v}.

Let be B(&,) = {i|i€ V, Dy, € &,}.

&, is called a proper subproject digraph system if*
({i, v}, @iy =iz=1i (1)
({r}, @) otherwise

(Po,) € P(Dy,)
(Po)i N &, C(B(,), @)
)
Choosing subproject digraph systems according to (1), (2) establishes
some conditions which have to be explained next,

Dla, DRy 8, Dhs 1 DRy = {

s Py, © Do Dy, € 3, t Po, = (PohiU(Po,) with

First of all, such proper systems do always exist, e.g. ¢! = Dy, and
o2 = {x|x € X, f}(x) = v} are proper.
Among the properties for proper systems one immediately recognizes.

Lemma 2. If &, = {D,,} is a proper system, then
05D 9, D o
Proof, It suffices to check the arc-sets,

Let be x € X(92) but x ¢ X(&,) then x ¢ X((Py,)) for all Py, and all
D;, € ¢ because of (2), thus because Dy, is finite and acyclic there exists

R €0 :={x'|x' € X, 3 Ppye C Do} with £1(3) -—-:'zlig({]"(x') >0,

but f1(%) is a transmitter of Dy, which is a contradiction to Lemma 1
applied to 59,...

Now, knowing that each x &€°X must be traceable to source O (by a
path Pop,) and assuming x & X(,) (which assures the existence of a
path Ppg,, by similar arguments) but x ¢ X(&;) yields

Poy 1= PopyUix}U Ppagay, & P(D,)

which contradicts the maximality of 50.. [ |

There are close connections between the choice of a proper system
and conditions for the routability of paths which can be seen from

* For digraphs D, = (¥}, X,), Dy = (V,, X,) the following notation is used:
D, CD,iff ¥, C Vyand X; C Xy, Dy ) Dyi= (Vi B Vy, X, B Y.
If Dy, D, are as well point as arc disjoint only one symbol @ is written. Sometimes it
is convenient to regard @ v as union of its subproject digraphs.
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Tueorem 1. If &, = {D;,} is a proper system, then

() ¥ Pxc Dy,
x € X(Py) A f3(x) € V()N B(9,) =3 Dy, € &, with
X e X(Dl'nu)

(i) % P C Dom
x e X(Py) N f1(x) € V(2)\B(9,) = either 3 D;, &, with
X E X(Dfuu) or (P;k)f"“"ﬂ ‘}u — 0
To prove Theorem 1 it is convenient to develop a preliminary resull.
Lemma 3. If &, = {D,,} is a proper system, then
¥ -PDp = -501111()!7 = V(au)) 3 'Dlnv = '}u . P(.‘p == (Pﬂp)luU(Pﬂp)lb
aﬂd (POp)lun ‘}u = (B('}v)! m)i (Pop)fu = Dlnu-

Proof. For p = v one gets (2), for p & B(#,) considering the trivial
decomposition Py, = (Pop)pU(Po,)? which allows to choose iy=p
Py, can be regarded as initial part (Py,);, of a path Py, with (Py.)e P(D;,.)
for an appropriate D, € &,, thus Py,N ¢, C (B(#,), ®). Now, let be
P € V(D) with iy < p < », From lemma 1 applied to D, there exists
Py C Dy, thus from (2) f‘or Py, 1= Po,UP,, there exists D;,, € ¢, and a
decomposition (Py,);, U (Po,) with (Po)i, N &, C (B(2,), @), thus p ¢ (Poui,
but the other possibility yields p & V(D;,,N D;,)\{/o, v}) (and from (1)
different subproject digraphs D;,,, D;,, must be point-disjoint except for v,
and eventually i, = i;), thus Dy, = D, and (Poo)r = ((Pou)1),U (Pou)?
with ((Po))s), = (Po)'s © Digws (Po)iy = (Poy)iy With (Po,), N &, C (B(2,), D).

|

Proof .Iof Theorem 1. (i) Construct a path Posrxy with xE X
(Posx) which exists because of Lemma 1 and apply Lemma 3.

(i) AssumexN &, C ({/'(x), f3(x)}, @) and M := (Pp)* ¥ o, = Q.
Choosing vy € V(M) minimal yields v, € B(&,) because of (i). Now,
construct Pop,y which exists because of Lemma 1 but for Pg,, :—
Popion UXTU (P ) *®),, Lemma 3 would not hold, thus M = @. i

Up to now, besides Lemma 2 no information about the relations
between different subproject digraph systems was obtained,

One can prove.

THEOREM 2. Let be ¢, = {D,}, &, = {D},} be two proper systems with
X(&,) D X(97). Then there exists a proper system &} = {D},} with

(i) X(27) = X(2,).

(i) » Dj, € 9,3 Dy, e & : D}, C Dr,

Proof. If one can choose 97 = @, (if &, satisfies (ii)) nothing remains

Jr. Comb,, Inf, & Syst, Sel.
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to be shown, otherwise exist Dj, € ¢, and, at least, D, Di, e &,
(see lemma 2) with
DiwNDipw2 (0} $)  DEuNDhy 2 ({0}, ). ®)

But (3) forces iy = i, — Jo-

it = I = jy is equivalent to j, = V(DN D}, and j, V(DiwNDE,)
must be valid, because otherwise Jo & V(Dj;,) together with (3) for 1 =1
means there exists v, = V(D,';,, N D) with jp < v<vand P, c D)
(from lemma 1), Now applying theorem | (with respect to ) yields
iy & V(Pj,) C V(Dj,) with jo < iy and (Py,), C D}, ¢, C o, and
there must exist D, & &, with i< j, < I} <wy<v and (P,,,vn),: c D,
but D,,,r‘]D;':,, D ({iy, v), @) for i i;, a contradiction to (1).

iy = Iy = jo = i* being valid, construct

0% = 8\{Div., Dis})UD}, with Db, := Dh, ) D,

¢, can easily be seen to be a proper system satisfying (i) but with a
reduced number of subproject digraphs.

If (ii) is not yet satisfied the above described procedure is repeated.

For ¢, 87 fulfilling the condition of Theorem 2 the abbreviated nota-
tion ¢, G &/ is used,

The following corollary gives a hint how to construct a proper
System that covers a given one according to (.

COROLLARY. Let ¢! = {D}}, 0, = {Da} be two proper systems with
&, G O then
¥ Do €9 ¥ je BO)NV(D}) — (g} : DY DyuD;,
Proof is now obvious from theorems 1, 2 and omitted,

4. CONCLUSION

Decompositions of project digraphs according to proper subproject
digraph systems may be of interest in situations when the structure of
the underlying digraph is too voluminous to be handled directly, The
special decomposition scheme described here fits, e.g. for scheduling
problems when one has to determine characteristic values for the points
and arcs of 50,,, taking into account the information given by the sub-
project digraph systems.

Surely, more comprehensive systems for which a representation satis-
fying G should be used may possess more informations than a given one
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and can yield improved characteristic values (in this context for v €V,

» = 1, Dy, would be the best one to be chosen) but less comprehensive
systems may be easier to handle. For stochastic project planning models
the concept, presented here, can be used by including recursive arguments
to find estimators for expected project duration times which improve
those known from the literature, see [3].
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