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1.Introduction

For the description and solution of many problems in the area of
operations research for which graph models have turned out to be an
appropriate tool if problem data are fixed and known to enlarge the
possibilities of application it is desirable to find corresponding
formulations if variation of data has to be taken into considera-
tion. With regard to this view-point problems including stochastic
variation of data are of special interest and some efforts in com-
bining stochastic and graphtheoretical aspects are cited in the
references omitting,however,the large number of contributions using
tools from reliability theory and stochastic programming (except [3]
i5]). of course,maximum flow and shortest path network formulations
belong to the problems for which stochastic generalizations were
considered (see e.g.[sl,bﬁﬂﬁsl ) +however,stochastic versions of
project planning models seem to be mostly dealt with in this context,
Defining a project to be a finite set of activities A =\{a1,...,a1n’s +0
with an irreflexive, asymmetric,transitive ordering relation @ ¢ axa
(which allows representaion as an adjacency-relation on the arc-set
of a graph at least after introducing dummy activities,see e.g [1],
Bd) and nonnegative activity durations the problem is to determine
the project duration which is yielded by maximizing over the sums
of the durations of those activities which form maximal chains (with
respect to ). Assuming stochastic activity durations an intuitive
idea is to replace the stochastic variables by their expected
values and solve the resulting deterministic problem (using CPM),
thus providing a rough estimate for the project duration mean.

For this PERT-approach [18] several improvements have been suggested
(see [4] [5],[10], [16],[22] ). This paper gives a description of a
class of estimation possibilities containig some estimators known
from the literature as special cases.

To get information about the distribution of the project duration
one can also use simulation techniques (see e.g.[2],012), 07, 23] )
or try to reduce or decompose the project structure (see e.g.[2]h3]
f4],09] ) .some decompositions of the project and properties of sub-
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project systems are also given in this paper. A further generaliza-
tion considering additional stochastic aspects influencing the pro-
ject structure is not handled in this context (see e.g.[7],02] [21]
for an introduction to those problems).

2. Project-graphs

Let ".."ii

(2.1) N = (B,K,p,X)

denote a (stochastic) project-graph” (with deterministic structure)
which means that (P,K,\p) is a finite, directed, simple, acyclic,
(weak) connected graph where P describes the set of nodes, K the
set of arecs and = (kf ? ) with ‘fi: K— P, i=1,2,§he injective
incidence mapping of the graph where \f (k) resp. Y (k) gives
the starting-resp. end-point of kg K. Additionally, (P, K, y)
posesses two nodes s,teP , called source,sink with

kel =s} =g, {xex|q k) =t}

For such graphs a bijective mapping (called topological order of
the nodes) G : P—3{0,1,...,m}, m := |P| -1 , satisfying

kex = ey (k) < ey (k) (with &(s) = o, g(t) = m) exists,
and for ease of description, it is assumed that P :='{0.1,....m§
is topeolegically ordered in the mentioned way.

For KcK let xﬁﬁ- denote the vector of random variables xk'k ek U
defined on a probability space ({3,6,Pr) (sometimes the subscript
X 1is omitted) describing the arc passage times. xke £1, kek ,
and, if \b}K is an appropriate partition of K, independence

i=1
for XK 76 wand XK, » and the knowledge of the joint distri-
1
bution of X, , i€{l,...,§} is assumed (For ease of description
>
often the special case IKi] = 1 is choosen. ).

For peP one defines

(2.2) K(p) :={kek|y (k) = p}, Blp):={ieP | ¢ k)=7,ke K(p)}

" Fom can be considered as graphtheoretical representation of a

project planning model where no stochastic aspects influence

the project structure.
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from which one obtains the following subgraph of ﬁom

(2.3) G, = (BLiK i)
D
with Py = {07 locarpl s Kp i= \_/J K(n) (as a partition of

F (e xP_np(x))) g = /& .j“=°
pp'Y * Tp p

Of special interest are subproject-graphs for i,jeP , 1 < Jj ,
which (if existent) are denoted by

)
ij

(2.4) N (Py 4K

1§ = 15" Y1y %k

where p g€ {tei+,.003-1,3) (4,9 € Py 4 is source,sink of N, ),
i] C\P (Pijx Pijn ¢ (K)) have appropriately to be choosen to fit
the pro:ect—graph conditions, LFij ‘-;P/I-(:Lj .

N ,x~—~ Jdenotes the subproject-graph which is

= P
Nop = PoprFoprfop o
maximal in G .
If wij describes a route from i to j , i,jeP (Wij is a spe-

cial subproject-graph), K(Wij) the arc set of Wij and MNij)
the set of routes wij belonging to Nij , one can define

(23.5) L(Nij} i= max :projk

M(Nij) kEK(Wij)
which gives the Nij—project passage time. Of special interest are
(2.6) L_:=L(N_) , peP

(with L, :=0 , L = L(N_)).

3. Subproiject-graph systems

For peP , p>» 1, consider systems of subproject-graphs of the
form
(3.1) "np :={NilJNip,mp,subproject-graph} with B(?fp):={iePlNi§%}

'3'}) is called proper subproject-graph system ifz)

Z,FOI graphs G1 = ,Kg) omitting the incidence mappings
‘P1.‘1’2 (and stochastic ve Xi ) tge ollc.\r:anr notation is used

where, if

no anﬁigugt;fianpgrisé only ilevant sét r&dce%é 15 1tte.n

97




{t,p},a =i=1

1 2 1 _
(3.2) Ni1p b Nizpe“a‘tp > N119”N12p { |
{pl ,otherwise
. N t W v W, with W
(23 Vwopa ipe Tlp * Wop = Woyv 0 Wpe Nip

There always exist proper (subproject-graph) systems , e.g. "ﬂp=‘ %ﬁo;:& "'

is always proper.
Among the properties for proper systems one has

(3.4) Theorem:
Let T = {Nip} ,T[ {N } be two proper systems with

UK U A Then there exists a proper system'ltz‘.'= {lic'é}

T ip n'p i
IR
with i) “I.J.qu 'ﬂ'( and

' (1) .
i1) ‘v'njpe‘HPH que'ﬂp : jp“'

For a proof see [11].

let be
!
|
.5 "o (N
(3.5) e,
the abreviated notation for the situation described in (3.4). ‘

The next theorem shows why proper subproject-graph systems are use-

ful. |

(3.6) Theorem:

If 'ﬂq ={Niq} is a proper system, q&P~4{0} , one has

Lq = :;?%c‘ : { Li + L(Niq)} |
For a proof one has to consider that for we {b and i,e B('ﬂq)
there exist W, o1& Nl (N o, Vo Wy genl (N which maximize (2.6)
(for p—i) and (2. 5) (for i i ,J—q) for the realization X(w),
but W uW EM(N , thus

11 q

(X(w)) + L(Ni.‘q) (X(w)) ¢ Lq(x(w))

Li <
1 L ad
On the other side if W ogq EQ:('(Noq) maximizes (2.6) (for p=q)
for X(w) because of (3.3) there exists Ny qe"ﬂq such that
2 |




| —

-

e

=W

Woq = oi, Y wizq with Wizqe'}ﬂwmizq) and, of course,
Woize }JTNoizl , thus
L (X(w) = S— proj (X)) + >_  projy (X))
a KEK(W_, ) KEK (W, )
o2 29
¢hy (K(9) + L0y ) (K()

Now, maximizing with respect to Brﬂq) gives the theorem.

4. Project passage time estimation

For ease description X, . k €K, are assumed independent for the
present. For Z<X let E, denote the integration with respect to

‘%X, , E (without subscript) the expectation.

Z
Then, for p€P , p2z 1, if S. are known optimistic estimators

for the ﬁ;j -project passage times which means

(4.1) Sy € E(Ly) je{o,1,...,p=1} , with S_ :=0

one can define
(4.2) s@v_,z_,L) :=E, max {8, + Ex (LN, )}
pfpt=p ZP B('ﬂp){ 3 ZP ip

where TTP = {Nip} is a proper system , {Zp,ﬁb} a partition of K.
With the restriction to partitions which satisfy

(4.3) Z < \UJK
one gets

(4.4) Theorem:

(1) Let ‘HP = { Nipl be a proper system, {ZP'EE} a parti-
tion of K satisfying (4.3) then
> r
B(L) 2 S(LZ,0Ly)
i ;f} 1 2

(ii) Let {zp, pl be a partition of K, i=1,2 ,and Z.3 7/

then

1 2
2
Sﬁtpr P'LP) z S(T(P'ZP,LP)
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From (4.4) one can see that the best to do with respect to

is to choose the partition {2"‘,'27’""} with z; = }rJKip , for which

S(T(p.z"‘,L ) , additionally, has the simplified form

(4.5) S(YL,, 2" L) = Egu max{s + LNy )}
PP 25 B (M)
The next question is, wether there is a possibility to improve the

estimator by changing from one subproject-graph system to another.
One can show

(4.6) Theorem:

If Uy = N} with z"‘ ,ﬂ. ;P,né- = {N;n;} with

z#ll ,:H Kl!

Tp

TN 1 oo
ST V28" L) 2 S aY' )

il > - 1y, " N
if E(qu) _Sj Sq for all qutﬁp) jeB(ﬂp)anp

(where qu denotes the maximal subproject-graph with respect
d,je P)

are two proper systems with 'ﬂé&'ﬂé' then

For a proof of (4.4),(4.6) see [11].

From this representation one can get estimators known from the

literature as special cases.

For instance, choosing s] as PERT-estimators for the N -pro-

ject passage times , jeo, 1, ... p-1}, "ﬂ; = K(p) (see(2.2)) frnm

which one gets B(T[p) = B(p) . Z; =@ , gives

; = S(k(p),@,L,) = max {S + E(X _, )} ,the PERT-estimation ,
B(p) ¥ (i,n)

2 1 T . 24 1 2
Taking ')’lp = Tlp » but Zo = K(p) and 85 > S5 (where 85 satisfy

(4.1) ,see [10] ) gives

2

§- = S(K(p),K(p),L.) = E max S + X

P TR TRIP) B(P){ %1 (1,p)
and from (4.4) it follows s; > s;,

Choosing T‘L; {_Wipl W ip is route from itop ,i,ps_P} in a proper
way (satisfying (3.2),(3.3)) and §33 sj for je B('I’lg) (where si
3
satisfy (4.1),see [22]) and Z, -1\{{ KWy ) gives
p
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3
s
P

= 3 - 3 2
= S({W; 1,20,L) = E;3 max  {s7 + LWy )} > s
) B({Wip})

because 'ng .’th, Fulfill (3.5) and (4.6).

4 _ 4 o k=
At last, choosing TIP = {ﬁ;p} r B 3 s gives the special
case

4
p

5: = s({NOP},K sLy) = B(Ly)

op" P

Thus, in situations in which it is difficult to determine the dis-
tribution of g“. but information about the distribution of passage
times with respect to subproject-graphs is available the representa-
tion given here allows the construction of estimators which
acording to the amount of work one is willing to do will substan-
tially improve all optimistic estimation possibilities known from
the literature. The independence condition for the arc passage
times can be weakened( see chapter 2.) to the assumption of inde-
pendence between xKi,i =1,...,8 , for appropriate partitions

{K;s++-sKg} Of K as can be seen from the theorems. For applications
additional independence between Xy NipeﬂTp is useful and
ip

realistic because of (3.2).
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