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ABSTRACT

If the demand/supply values at the nodes of a given graph are assumed to ba
random variables standard flow theory is no longer meaningful. A two stage stochastic
programming approach can.be used to yield as optimal *‘quasi’-fow solution which
minimizes ‘‘quasi”-flow costs and expected costs for compensating nonconformity
with the actual realizations of the demand/supply. A special case of this formulation
is shown to be the well-known stochastic transportation problem. :

An example is included for illustration.

1. INTRODUCTION

-

If problem data are assumed non-stochastic it is well-known how
graph theory can be applied to vaiious formulations concerning com-
munication, transportation or flow problems, but unfortunately this
assumption is inadequate for many realistic situations of this kind and
also for other problems allowing formulation by graph-theoretical tools,
thus, some efforts in combining stochastic ond graphtheoretical aspects
have been made, see e.g [3] which also contains a chapter on flow esti-
mation problems. Whereas in that chapter stochastic linear model
theory is used to get for a given graph estimators for the arc flow values
satisfying flow conservation constraints for a set of nodes for which
demand/supply vaiues are known, in this paper the demand/supply values
at the nodes of the given graph are assumed to be random variables the
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realizations of which need not to fulfill the conditions necessary for the
existence of flows. Nevertheless, one wants to determine a “quasi’’-flow
which minimizes ““quasi’’-flow costs (the exact definition of “quasi’’-flow
is given in section 2) and expected costs for compensating non-conformity
with the actual realizations of the demand/supply. A two stage stochas-
tic programming approach is used allowing to determine the solution by
a sequence of properly chosen out-of-kilter circulation problems in a
slightly modified graph if the underlying probability distribution is
discrete. Situations using more general distribution functions can be
reduced to this case, see e.g.[d, 6] for approximations of continubus
distributions functions by discrete ones.

A well-known special case of the here described approach is the
stochastic transportation problem.

For an introduction to stochastic programming see [ 5] and for
an extensive bibliography on papers concerning various topics of stochas-
tic programming [ 7 ] the necessary graphtheoretical tools can be found
in [I,2] some of these knmown definitions, however, which relate parti-
culary to this paper are given in section 2. Section 3 describes the
solution procedure and gives needed statements the proofs of which are
postponed to section 4. In section 5 an example of simplest form is
explicitly illustrated.

2. FORMULATION OF THE PROBLEM

To start with consider the non-stochastic case. Let
G=(N, 4,1) . (1)

be a finite, directed, (weakly) connected graph where N (with | N | =
n€N) describes the nodes, A4 (with | 4 | =m € N U {0}) the arcs, and
I=(14 I*) with I/ : A - N, j=1, 2, the incidence mapping where I*(a),
I*(a) gives the starting-, end node of a € 4. For i,j € N define
Ay={a|a € A, a)=i, I*(a)=j}, if | 4 | =1 one can also use (i, j) to
denote the single arc from i to j.

Sometimes cost- and capacity-functions k, ¢, ¢* : 4 - R, 0<c'<¢?,
are defined on the arcs of G.

In this paper every f: 4 -= R will be called ‘“‘quasi’-flow on G,
additionally, capacity-feasible ‘“‘quasi’-flow if

Ad<fu<c?, a€ A
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“holds. Note, that for

W (f) = S, i T s 1) o Fan b D)

{ala€ 4, Ma)=i} {a|a€ 4, I'la)=i}
it follows
Z 7 (£ )=0 for all “‘quasi’*flows /. 3)
i€EN
If one has a partition (Q, R, §) of Nand v : N -+ R with
1i>0,i € O, vi=0,i €E R, vi<0,i € S @1)
z — 2 v (42)
1€ ieES

one is interested in a (capacity-feasible) “quasi’-flow satisfying

u:’ (f)=v,iEN (5)
called (capacity-feasible) (v, i € N)-flow.
4 (0,...,0)-flow, that means Q=S<=¢, is called circulation in G.
Well-known (non-stochastic) flow problems e.g,

@ determine capacity-feasible (vy,...,v,)-flows which minimize a given

cost functional Z kgl ifz'viop,
aE A

® look for such flows which among all capacity-feasible (vy,...v,)-flows
for arbitrary v satisfying (4) for a given partition (Q, R, S) with

0 maximize 2 Vi
i€ Q

For node i € N, v; can be interpreted as supply/demand according
to whether i € Q/i € S, and it appears realistic to assume that these
values are given by random variables v, defined on a given probability
space (Q, F, Pr). )

In the special case if only for i € S, v are allowed to be {non-

positive) random variables one gets the well-known stochastic transport-
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ation problem (with stochastic demand). As for given o € Q, the
realization v; (w), i € N, will determine the partilion (Q(w), R(w), S(w))

of N accord-:l:ng to (4.1) and, generally, will violate the condition (4.2)
vi(w) 4 z vi(w)=0
i€ Qo) i € S(u)
( (w),..., va(w))-flows will not exist, but one can look for a “quasi’-flow

[ (capacity-feasible if needed) and. compensate the possible non-
conformity

U (f)# vlw)
by adequate means at corresponding costs.

In this paper a “two stage stochastic programming” approach _is
used to handle this problem.

Let there be given linear costs for compensating non-conformity
with a “quasi’’-flow f defined for fixed i € N, w € Q, by

[ —v (@) -1 ) <

<| . if vi(w)=u®(f) (6)
#(i(@)= e

L 3 Ouo)=u () o>

where 8;, y; are given real numbers satisfying
itvi>0,i EN (7

cp: is a random variable on (Q, F, Pr) for every “quasi-flow /. Let E -
denote expectation, then the aim of this paper is to find a solution for
the following “stochastic flow problem’
Z ke fut z E(tp:)-=min !
a€ A iEN .

f—'; </fa <c:, a€ A (8)

that is, to look for a capacity-feasible “quasi”-flow which minimizes

“quasi”-flow costs and expected costs for compensating non- conformity



A STOCHAS TIC FLOW PROBLEM 233

with the actual realizations of demand/supply. For computational
purposes we will consider (8) for cases when the support of v, is finite

which is/ basic for considerations concerning approximations of more
general (known) distribution functions, see e.g. the already mentioned
articles [4], [6], and also for situations using the empirical distribution of
v¢ when the actual distribution function is unknown.

o~

Let

Vig <Vig<ewwers <Virs Vi ER,IENr=l... s T (91)
T
Pr(vi=vi) >0, z Pr(vi=vir)=1 9'2)
= r=1 =
there exists i* € N with v,,,;-eo. r=lg.. s , (9°3)

where (93) means that for every realization vi(w), i € N, one has
O(0) U S(w)7#0. Now, because of (9°1), (9°2) the expectation term can
be written as a finite sum

ri

Ee)= ¢n)Prin=ve)

re=
and each cp: (v,r) can be realized as optimal value of the following linear

(recourse) program

ol)=min & yF +rer7 | ¥d =¥ =v— ui(S)

| Yi ¥ 20}
allowing to rewrite (8) as a linear program of the form
ri
z ko furts z z (3 +y:yir) Pr(vi=vi)=min !
aEA iEN r=1 - '
C; < fa < Ci ,a€ A

Vin Y20
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The dual program of (10) can be written in the form
ry

2.2

2 2
VirTir+ Z (-'tli G%"" z €, €, =max !

iIEN r=i ac A ac 4
z Tip— 2 i+ €} —el =k,, a € A with ;,((a)_—' (11)
r=1 r=1 |
IEN
—YiPr(vi=vi)) <n <8, Pr(vi=avy,)
o Fad r=1,2,...,ry

€3| £:>0'

Of course, these linear programs could be solved by versions of the
simplex method but depending on the number r, of realizations of v the
dimensions of the problems (at least, when using appronmanon
arguments) could be too large. This is also the main problem for

stochastic programming formulations of this kind, see e.g. remarks given
in [4], [6].

In the next section we will show how problem (10) can be solved by
a finite sequence of out-of-kilter circulation problems (see (20)) on
graphs which are of about the same size as the original one. To ensure
finiteness restriction to rational data is made for the capacities

c‘. 0’ and costs k,, @ € A4, as well as for the realizations v,,, and their
probablhtles, i€ N, r=1,..

3. SOLUTION PROCEDURE

Because of the capacity restrictions there exist numbers my , M;
such that

mSu’(f)SMi, i € N
holds for all capacity-feasible “quasi’-flows f. Select finite values Vios

Vitre+ 1 in such a way that [

vfn <min {V‘l, m‘}
,iEN (12)
vi(r‘+])>max {vm, M}
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is satisfied. These quantities are introduced for computational con-
venience, one shall see later what role they will play in the solution
procedure.

Now, for each node i € N select one realization of v, say v,
—~ i

with x; € {0, 1,...,r:} (see also (12)) and define vectors g, h € R" the
i-th component of which is given by

8=Vixp M="i(x+1) (13)
These vectors g, i 1cad Lo 2 partition (N, Ny, Nj) of N where

Na=N\(N1 U NS)
and allow the construction of the following graph G,’™ whichis a
slight modified version of the underlying graph G

G = (N@W, A@D [0 (15)

where
Ne®m=N U {g, s} with g, s & N for all g, h of (13)

and
3 ¢
A=A U A

and for which to simplify notation the incidence mapping 1@ is omitted
' 3

because on'A one can use / and the additional arcs of IUD A; can uni-

quely be identified by its starting- and end-nodes in the following way :
Ay={(s, D}
4,={(q,1) | i € N1}
A=, 9) | i € N3 | )
Ay={(g, i), (i, ) | i € N3} ]
Capacity-constraints c@ML @M ; °M — R with ogccv'mit_g_c(a-m
are given by

clo w1 ‘=c§ , oo M2 el A€ 4
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The dual program ot (20) is given by

2 (g, h) ¢ Ma,— z (g, h) ¢ M2 B,=max !
ag A ag A
a=(i,j) ifa & 4
Wi— Wi+ ta—Ba=k"*' M, a € A with or I'(a)=i, I*(@)=j
ifaEg 4
sk
tgy Ba = 0

The connection between (8) or (10) and (20) is given by

Lemma 1. For every capacity feasible “quasi’-flow f on G according
to (8) satisfying

gséuf(f) <Ml iIEN (22)

there exists a capacity-feasible circulation f'on G''™ according to (20)
such that

2 kLﬂ h)fa= z kafn+ z E(cp"')—B(‘” n) (23)
ac 4 aEA iEN ]

where B'"™ does not depend on f (and f').

Conversly, for every capacity-feasible circulation f' on G@M
according to (20) there exists a capacity-feasible **quasi’’-flow fon G
according to (8) such that (22), (23) holds.

PROO!;. See section 4.

REMARK. We use the term ‘“‘corresponding to” to denote the
“quasi”-flow fon G yielded from a circulation 7 on G'YM by f=f'l4
and, vice versa, a circulation f" on G yielded from a ‘“‘quasi’’-flow f
on G in such a way that f'/4=f.

Applying the out-of-kilter algorithm to (20) will determine an
optimal circulation f' (if there exists one) and the “quasi”-flow f

corresponding to }:,’ will be a best one satisfying (22). Moreover, the
out-of-kilter method will also produce certain dual quantities wy,
i € NO® (and a,, P4), see (21), which allow to formulate a sufficient
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condition for the ‘“‘quasi-flow F corresponding to f'to be a best one
at all.

Define for given wi, i € N M

o, =max {0, —(Wzl(m—wxgm)— k(,"m_)} - aEc A

Ba=max {0, wll(n)—Wszﬂ)_kSI,’hl} (24)

%, p=max {0, w;—wi} 3
» LD E U4,

Bty n=max {0, w,—w;} ¢=0
and

G(ay ) ] i E N],

A= (25)
3(‘1 ) . LE Nl v Na
Bras 0 , TE N, U N,

K= . (26)
Oty 8) » 1E Nz

The following notation is known from out-of-kilter theory :
For a circulation /' according to (20) and arbitrary w,, i € N’ M,
call a € A’ ™ in kilter iff
1g>0 = fo= ¢ M, B> 0= f, = M
(27
dp=fe=0 = M f, g clhMe

otherwise, call a € A’ ™ out-of-kilter.

If (20) has feasible solutions then for f' and u';;, i € N@&» determined
in the last step of the out-of- kllter method when all arcs are in-kilter,

and p,, A, (which are given by w;, i € N@ ™ according to (25), (26)),
i € N, one has

THEOREM 1. If
:\‘: < (Bi+v)Pr EEF‘E:)

~ . , IEN 28)
24 < (ai'i"fl)Pf ("F"’M) (
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then the “‘quasi”-flow f corresponding to the optimal circulation F " obtain-
ed by the out-of-kilter algorithm is optimal for (8).

Proor. See section 4,
Now assume that (28) is not satisfied, then, from (7), (24), (25) and

(26) we get a partition (N, Ng, Ng) of N with
N0='{i | i € N, (28) is satisfied}

Ng={i |1 € N, we> (i k) Pr(v=h)} (29)
Ne={i|i € N, N > Bi+v) Pr(n=g)}

(For checking that (Ngp, N @ N@) is a partition of N use also

:;q=;| shown in the proof of Theorem 1, see (52), section 4). To cons-
truct a new circulation problem and a new graph G'™ ™ define

Ol No

xc+1, iENGB (30)
xx=1,iEN o

-

where (12) guaraufees that x—, € {0, 1, ..., ri} by the following argu-

ments :
S (28)? (14), (17) ~
x=0and i€ Ng NNy = M=, 0 >0 = = f'uqg
(29) 27
(s W1__ b B fat . b :
=¢» ¢ =Vio, butf’ being a circulation gives
.;:’(';l = f“f =5 }"

(@' ac A, INa)=1i} {a | a€E A, TM(@)=i}

== Uf (F)=Vin

for the capacity-feasible “quasi”-flow }"- corr_esponding' to f’, a contra-
diction to (12). The cases xi=0, i € N@ N Ny and x,=0,i € Ne NNy
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can be treated in the same way, thus
:i=0 = e Neo

The proof of
xi=r: = i g Ne

H. J, CLEEF, W. GAUL

can be yielded by similar arguments and is omitted.

Now, use g, h, p- to denote the quantities given by x; according to

(13), (18). With these quantities create the new graph G” ™ and the
new minimum circulation problem, see also (20)

(@ m
z ka' @ fi=min ]

ac A

g QST e A

(31

7 m

Taking the optimal circulation f’ yielded by application of the
out-of-kilter algorithm to (20) and defining /' by

& Tt A
Jd= .
0 ,» otherwise

gives

a € AP M A Al B

(32)

LEMMA 2. f'is capacity-feasible circulation in G@ M according to

G1) with f'|A=f"|A.

ProOOF, See section 4.

Moreover, defining w; by

[
e [l
wi=< w8+ v ) Pr(vi=hy)

IL ;,_(s, + y,)Pr(i. =g,)
gives

] i E NO U {q: "}
e My (33)
, 1E Ne
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LemMaA 3. For}’ and ;1, ie New (=N9" M), used as starting
guantities for (31), it follows

fHac AU Ao = a fs in-kilter are
(i) i € NO = (g, 1), (I, 5) € A" ™ are in-kilter arcs

(iii) i € Ny U Ng = not all (g, i), (i, 5) € AT M gre in-kilter

L

darcs.
PROOF. See section 4.

In view of Lemma 2 the minimum cost circulation problem (31) has
a feasible and therefore an optjmal solution.

Moreover Lemma 3 assures the additional “kilter” steps have
to be performed when applying the out-of-kilter algorithm to (31) using
}’ and wy, i € N ™ given by (32), (33) as starting quantities.

The following lemma is needed.

LemMMA 4. Let for an underlying graph G ™ f' be a capacity-
feasible circulation and wy, i € N'" ™, be given in such a way that all arcs
of A U A, are in-kilter.

If there exists an (elementary) cycle C (containing at least one out-

of-kilter arc) for which a circulation change of value A>0 according to
kilter-rules is possible, then

Z k;" M( fg‘)“'<0
ag4

I A, ag 4%C)
where f. : A ¥ - R with ( £, da= { —b.a€40©

L 0, ag 4(C)

describes the circulation change, (4+(C), A~(C)) the partition of the cycle
arc-set A(C) indicating coincidence of arc and circulation change directions. .

Proor, See section 4.
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A
Denoted by /' the optimal capacity-feasible circulation of (31)
determined by application of the out-of-kilter algorithm with starting
quantities [, w, i EN'O M,

Using Lemma 4 one can show

A =
THEOREM 2. If f' = [, then

S i > i (34)
acA acgA

and f'=f‘/A is not optimal in (8).

ProoF. See section 4.,

A =
Thus, if /' 3£ f" the construction of the new indices Xis iEN,
according to (30) has led to a better *“‘quasi”-flow solution to (8), and

restarting the whole procedure with x,, i € N, a belter solution of (8)

A
(whichis f /4, as we already know) will be found.

On the other hand if ; ’-f_' (this case corresponds to degeneracy
in linear programming theory) a “modified version of the out-of-kilter
algorithm™ has to be applied to make sure whether an improvement is
still possible, which is indicated by creating a new graph.

Maodified version of the out-of-kilter algorithm :

Startinpg on G'” M with the known quantities f", wi, i € Nie* ™,
which are given at the beginnig of the modified version by (32), (33), and
in further steps (if no new graph is created) by the updating according
to (47), see below, and using a starting out-of-kilter arc (g, /) or (J,s),
- JEN o Y N ., two cases have to be distinguished :
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If j € Ng define

X={jlU € N ™ | there exists a path Py from jtoi
which allows arc flow alteration
according to kilter-rules} (35)
Y=N@ M\ X
O,=min {(Bi+1)Pr (vi=g)—Ni | I € No N X, =0}  (36)
Ifje Ne define
Y={j} U {i € N@ ™ | there exists a path P from i to j

which allows arc-flow alteration
according to kilter-rules} (37)

XaNT BN ;’

Op=min {Bi+1)Pr( v=h)—pi | 1€ NoN ¥, M=0}  (38)

Denote for M;, My C N’ ™ by

(My, M={a|a € A7 P, a=(i, ), i € My, j € My}

the set of arcs which have their starting nodes in M, their end nodes in
M, and define, similar as in the dual phase of the standard out-of-kilter
algorithm (see [11)]

S;={a € A9 M | 2,>0, a € (%, D)} (39)
Sy={a € AP M | B,>0,a € ¥, X))

8z, 7 =minmin (¢ | a € S, min B | a € S} (40)
and ;

@*=min {0, Q(X, l—’)} 1)
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and change the dual quantities according to

. (W+0* , ie X
{

Wi =4~ -
WI ? i EY-
If
0< @‘=®ff, ]_;) <0, (43)

the dual change according to (42) coincides with the dual phase of the
standard out-of-kilter algorithm. Additionally, if

* = p¥* *

o I, L= o — ﬂ* —
(@, i) ﬂ(r.-«. iy =0 orfand %o 5= Pl s =9 (44)

for some arc (g, iy) or/and (ip, s) with i, € N @ Y Ne

io is added to Ng. (45) ¥

1<0*=8<0.z. T o)
after a possible dual change according to (42) (if ®*>0) a new graph
G'% M can be defined and the algorithm stops.

Whenever no new graph is created the following updating
Wweiew) (47)

Ny =N, U {ig} if (44) holds,
the correspording Ng; or Ng et is reduced

is performed, and a new dual phase of the modified version is started
working on the same starting out-of-kilter arc until it becomes in-kilter,
If no out-of kilter arc is left, the algorithm stops.

LEMMA 5. During all steps of the “modified out-of-kilter algorithm™ ;
Wa= W, (48)

(i.e. ?‘(q, ;,ﬂ-ﬂ(g, Q):'O) is Sﬂﬁs‘r‘ﬁed. .
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PrOOF. See section 4.

A =
Tueorem 3. If f'=f" application of the “modified version of the

out-of-kilter algorithm® leads to
A ol A A e
either (a) new quantities wy, i € N W' ™) such that for f',wy, i € Nio* ),

all arcs a € A™ are in-kilter and for the corresponding

A A
N, wi, i € N, (28) is satisfied
or (b) new quantities ;,, i € N, determining a new graph G ™ and a

new minimum cost circulation problem according to G'”’ M such
that there exists a capacity- feasible circulation corresponding

~ A
to f=f'|A which is not optimal.

PrOOF. See section 4.

= A
_Thus, if f'=f'and the “modified version of the out-of-kilter
algorithm” has led to a new graph G M (Theorem 3 (b)) restarting the

whole procedure with ;i, i € N, a better solution of (8) will be found.

In any case the procedure is restarted an improvement is possible.
Therefore no ( . , xi, -.)-vector is used twice. Because of (9.1), (12) an
optimal solution of (8) is determined by solving a finite number of
minimum cost circulation problems of the form (20) wher application
of & “modified version of the out-of-kilter algorithm’ may be necessary.

4, PROOFS OF THEOREMS

At the beginning of this section proofs are given in a rather explicit
form whereas a more compressive form is used later on. Some knowledge
how to handle out-of-kilter algorithms could be helpful, see e.g. [11, [21.
ProOF OF LEMMA 1 :

From the construction of G'* M it easily follows that every capacity-
feasible “quasi”’-flow /' according to (8) which satisfies (22) can be
extended to a capacity-feasible circulation {" according to (20). Set

f;gfn , a€ 4 (49°1)
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fao= S w (N+ Y max 0,4l ()6 a) € 4,

i E NI i E Na ...(49'2)
f'(asi) ﬂ"? Cf) » (Qr i) € 4, (49'3)
Sl =—u (f) , (L)€ 4y (494)

[ max 0, uf (£)} a=(a. )
fd=A » 4 E Ay (49'5)
| max 0, —uf (/) a=G )

Then it is obvious that /' is capacity-feasible according to (20), see
(17), additionally

W ifili =0 if i € I, (see (49.3))

| ' ot ui(f)=0 if i € N, (see (49.4))

W2 M(f,)ﬂ-«i S w0t “?(f)."f'(!h n=0if i € N, (sce (49.5))
S n'—f'(u = z f’u. £}
(i: j)eAl U Aa (i'j)edl
, + N =S w0=0
L (i- f)EAs
y (49.2)
if i=g (see (49.3))
(49.5)

For the remaining case i=s note that

>l =Y (=ut (1),
(j’ S)EAI jENn

z S 0= z ('-“f ()
(J, S)E 4, JEN,
with u‘: (f)<0
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and (because of (3))

S W= 3w+ D w ()

JEN JEN, JEN,
+ D W)+ D w(f)=0
JEN, JEN,

with u;‘(f)>o with uf (f)<o0

thus
ufw M(f’)=f'(-, o= 2 Sl o — z S'u 0=0
(J, )E 4y (), 5)E 4, -

showing that /' is a capacity-feasible circulation according to (20). On
the other side if /' is a capacity-feasible circulation according to (20)
f=f'|4 is a “quasi”-flow by definition and capacity-feasible because
the capacity-constraints of G and G » coincide on A4, see (17). For
iIEN

W [ 4+ @0 » IEMN
G 0 s TR
4 (A=u"" "(f )< et . iEN,
=0

|
L + @ o=t » IEN;

but /' being capacity-feasible according to (20) gives, see (17)

g.'s,;f’m' 0 h 3 'eN:I
—hsf 6 nS—8 » IEN,
D“('_’g‘)s-f’“s ‘)—'f’“s ')shi—o N jENg

Now, take a “quasi’-flow f according to (8) satisfying (22) then

48 [t ()-w) . 1Sr<x
'P‘ Vig)= *
U 8 Ou—u(s) xS

Fi
and  E( ‘P:)'='z ‘P: (Vir)Pr(rl:::v;,)

r=1
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Xy
=> 1 (N)=ve) Prie=va)

r=1

ri

+ S Bl (£)Priv=vy) (50)
f='“+l &
X¢ Ty
= "“"Yiz Vi Pr (Vi= Pu-) + 8. Z Yir Pr (l’l= V;,-)
r=1 iy r=x;+1 i

X
+ 1y (FIQ Pr (re=vir)ri+30)—80)

r=I1
But the first two terms are independent of f (and f '), 'together de-
noted by B{” ™ | the last one is equal to p;» 1y (f) with p; given by
(18). Thus,

> Ee)= 3 BN+ > aulf) ey
iEN iEN iIEN
———
= B M4

(Pll(ﬂ) i Plgfﬂ)) f“
aEA

and

2 kafit 2 Byl z (katepy™ Praggy) Sat B
a€A iEN a€4

Conversely, given a capacity-feasible circulation f’ according to
(20) take the “‘quasi”’-flow f=f'/A corresponding to f’ which satisfies
(22) as shown in the beginning of Lemma 1 from which (23) is yielded
according to the above arguments. [J

PROOF OF THEGREM 1 :-

First, observe that
Wa="s. (52)

~

ws—w,>0 would lead to B, n>>0 and [’ m'=c::: :',", see (27)
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for a=(s, g), but this is impossible by construction because f ‘ being a

circulation yields, see (17)
_‘?'(c, 0 < f:: F:))n__; (—&)
(i, 5) €43 UAs (i, )EAy U,
7 Mg
<y max. { | gl [ hel} <e 7"

iEN

On the other hand ’“-;l'_';;q <0 would lead to @, o) >0 2and

@ m1_q, see (27) for a=(s, q), from which follows

~I
[ n=¢
(53 @)

I 0=09, '@ n=0 for all (i, 8), (g, 1) € IL:'IA;, asf'isa pircula-

tion. Therefore N=N;, that means Aj=A,=¢ but, see (27) and (9'3)

f

i~ - £
% =0 gives w* —w, <0 L s
/ (i s 9) g 4 P A thus, w"<Ws<Wc<Wi‘n
T =0 gives we—w;*<0

a contradiction.
Now, define for iEN
[ —yi Pr (vi=Ver) , rSx—1
—vy Pr (vi=vis) +A , F=X4
Tir— < Ly
8 Pr (vi=Vir)— i , r=x;+1
1 8 Pr (vi=v) , r=x+2

then,
— i Pr (ni=vi) <mer <8 Pr (="ar) (54)

is valid for r @ {xi, x;+1} by definition, for r € {x;, xi+1} by (28) and

one can easily verify
re

z rp=—ptA— L IEN

r=1
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and, using (52)

-~ ~ o~

Ni—py = wi—w,

thus,
ri
z “tr=(;i_’9l)_;:’¢ .
r=1
Defining
el=uo, =B, , a € 4 (55)

one gets for a € A4 with I* (a)=i, I* (a)=j, see (1Y)

r ry
D we= D ek = mmmm—atnti—, (56

r=1 r=1

(os &
=k:’ ’“'Pt+93=ka

(54), (56) show that =, €, ¢ as given by (53), (55) define a feasible
solution of the dual program (11). ‘

On the other side we can define a feasible solution to the primal
program (10) by

f=r4
o o iR
+ ll ~ W (N=vie , r < x
Yir =<l » Y= I (57)
| vomit N

Now showing that for these primal and dual feasible solutions
(53), (55), (57) the values of the objective functions of (10) and (11)

are equal is sufficient for ;to be an optimal "quasi’-flow solution to (8).

Using considerations as in the proof of Lemma 1, see (50), (51)
one gets for the objective function of (10)
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> kedut > (i Bovy bt ) PO ) ()

ac A iEN r=1
l o, LR m
= Cetoyy) Py SotE
ac A
=Z k(aﬂ! h) }.:, +B(" h)
ac A

and using duality (notice optimality) for (20), (21)
2 kc(:' h) }‘ﬂ, =2 c::h M1 ;;_Z c;lh n):"é’a ) (59)

acA aE A" M acAem
On the other side, for the objective function of (11) one gets from
(53), (55)
Fi
S et > d d-> e
iEN r=1 ac A acAd
x4 ri i
=.z (2 — o v Pr =)+ 2 B e Pr =) )
ieN r=l r=x;+1
£ Gy~ + D, 45 -> 4k @
iEN acA aceA

Note, that the first sum is equal to B’ ™ which follows from (50),
(51), thus, comparing the remaining terms of (58) (expressed with the
help of (59)) and (60) it is enough to show equality for

Z (Aevix, — MVi(ae+1)

iEN
and Z (cler M1 ;; — clor M8 Eﬁ)
3
ac U A

1=1



252 H. J. CLEEF, W. GAUL

(s, g)=A, need not to be considered because from (52) :u, q)=Eu, a)
=0.- Now, as 4; is defined using Ny, 1=1, 2, 3, see (16), for

i~

iEN,: N Vrn"‘ g vﬂm‘-ﬂ):“(m 08 =B 0 hi

cws Ml_ﬂ C(n hy2
(ds &) (a2 1) (2 1) (ay )

~

IEN;: N Vie,~WVita 41) =B, 5y Be—%u, o) Mi.

= (gs A)3, ™~ . (FTR )5
=Bw o (—c¢ — —'c .
i (i ) ) (s 8) (i #) )

—~—

iEN;: M 3’1-‘—P¢v¢(-¢+n=ﬁu, ) &—Bw o M~

~

o (_C!F! MS) ﬁ c(ﬂ! k)ﬁ*o_i_o
T iy (45 #) () (g

h (23 )
because ¢ :f: n)l =c@ 5 =0. 0

PROOF OF LEMMA 2 :

For ac AUA, as well as (g, i) and/or (i, s) with i€ N, the capacity
bounds and the arc flows are unchanged by (30), (32).

Let (W,, Na, NV3) be the partition of N with respect to g, / according
to (14) then for iEN63 UN e the following cases have to be distinguish-

ed (Note that the remaining cases are impossible.) :

i€ N, NN, \Ng, i€ Ny NN, NNg (61°1)
i € Ny NN; NNg (61°2)
i € Ny NNy NNg, 1€ Ny NNy NNg (61°3)
i € Na\N; NNg (61°4)

i € Ny MN; NNg (61°5)
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i € N, N\N; NNg (61°6)
i € Ny NNy NN, i€ Ns NN; ONg. (61'7)

Here, only the first part of (61'7) as one of the more complicated
cases is explicitly proved. We have

(EN; = hi > 0,iENg = g=hi, IEN; = & < 0) = hi=0

(62)
IENG = RO SR T S "M =0
(17), (26), (27)
iIEN,
additionally,
;, > 0 and 1;;-=;., see (52), imply
pi=Pgy )= We—Wi=Wy = Wi=0s, 5 > 0 =2 Fu, )
=.c(1h ?lll=_.0 (17)’ (26)r 27) !
(i &) iF_Na
and, together with (32)
f-'m 5 = f'w- #=0.
For the capacity-constraints one gets
P — T il (g2 Mt
IENy; == ¢ =c =0
{fs 8) (@ §)
(17)
= (o me =
iENa nNe =i cm i =gy = —V&‘=-—V¢ ('i"l'l) :
(17), (30), (62) =—h;=0
i M

¢ = h=vig,+41) >0

(as £)

showing that 77, s, /@ « determined in (63) are capacity-feasible arc-
flows. To check the circulation condition for i € N, rﬁ.’ NN ® note



254 H. J. CLEEF, W, GAUL
that A C A%’ M N 4@ ® and use (32)

@ n — - - * = —t
u’ "N =TI+ T 0= w6

{

gl m

= (S e 0 = Priw iy (F)=0

A discussion of the remaining cases of (61) is similar and omitted. 0

PROOF OF LEMMA 3 ;
From (18) and (33) follows

— — ™

Wi—pi=wi—py , i€ N
and with (19) (and (33))

—_ e {;’ h—] ~ -~ (g* B) o =
wi—wy; — k, =w—w—k, , a€& Awith II: (f:))=jt

E—_ﬂu};:—;; 3 (S, Q)___Aﬂ
thus, part () of Lemma 3 is true because f '/ AUA, =-? y AU Ay 5¢ (32),

and for}'", ;v:, IEN M, all arcs have been in-kilter.

Now,
IEN, = ((q, 1), (i, 5) € AT M = (g, 1), (1, 5) € AT W) (64)
additionally, capacity-bounds are not altered for (g, i), (i, 5) €

AP M 46 ® gnd
wi = wifor i € N, U {g, 5), see (33)

ﬁ:, = w, which follows from (52)
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yields with (24), (32), (64) for (g, 1), (i, 8) € Al W

Xy H=%wsh) » Prw =B 1) [ @ o=@ o
/ © and
&ty 5 =0eis 9 5 By n=Bui> o) S 0=f"ts m
and the first part of (ii) is true. '

In a similar way as in Lemma 2 the different possible cases of (61)
must be checked, here (61.2) is explicitly treated. We have

- (25) — s
i € NyN NN Ne =29=; Ai=0gy &) > (Tt+8i) Pr (vi=g:)

thus

gy iy=Wi—Wy > 0 (65)
from which follows

tg, yn=max {0, wy—wg}

(;;nax {0, wi—wo— (i1 Pr(ve=gi} (66)

(;)am, o Guty) Pr '(_fi‘_‘g‘) >0

Now, i€ NyNN;=(q,i) € 4" ™ AA@ B

b __~.- — as b
= o n="wly = .M

(32) (65) {as 1)
but ie N HTVB ﬂN@ gives
AL {0 M1 —
Fwa Ay Vixg = Viggipy=
(17 (30)
(7 W2 ‘
=c >0 (67)



256 H. ). CLEEF, W, GAUL

(@ w1 = e
whereas B il 0 for (¢, 1) € Ny

(66), (67) show that (g, i) is out-of-kilter.

A discussion of the remaining cases of (61) is similar and omitted. 0

PROOF OF LEMMA 4 :
Note that /'’ is capacity-feasible. Now, because ¢ € 4 U A, is in
kilter one has, see (27)

4, =Pa=0 for a€ A(C)N(4 U 4p) (68)

to allow arc-flow alteration, and from this

Wita) ~ Wita) = k7 M a€ AC)N 4
if (69)
Wqg = W, (s, 9) € 4(C)
additionally, k™ = 0 for a g A from (19).

3
As out-of-kilter arcs belong to ’Ul A, at least one arc of the form
(g, i) or (i, 8), i € N, belongs to 4(C), on the other hand

A(C) N Az ¢.

Assume without loss of generality that N(C), the node sequence of C, is
given by
N(C) = (q, f1y seesesy fp, q),

(g, iv), at least, is out-of-kilter, and (g, ;) € A*(C)
C contains no cycle.
Now, 5§ E {ia ..., ip_l} or .s'=ip ors & {is, ..., iP i
Assume s = lp_ € {iy -, ‘p-—l} then
(ip—l’ ip ) € 4%(C) = ity oty =0

= Butypr 4 7=Why Wi =0 (70)
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(i!-'--l-l‘ ip. ) € 47(C) = ﬁu“,@,p iy y=0

= Gy Loty VT W W, g =0 (71)

and (g, iy) €EA*(C) (and out-of kilter)

’ (o K12
= [ i) < € 0

Big, i) =MW, > O (72)

(g h)1

Now (ql i.p) e A_(C) ='f’!th !p; >C(¢, ‘P', ﬂta. fP) =03

%ay 1) = Wi, —Wa 2'0=(73)

yiélds

D K= vy =) Ak, A
acd

< (ws i ) A e |
oy P (72,73
The remaining cases s=i_ (note that now (s, g) €A4*(C) and use (69))

and s & {is, ..., ip ) are easier to prove and omitted. []

PROOF OF THEOREM 2 :

As}’ == f ’ a flow change is yielded by successful application of,
say t = 1, primal (flow altering) phases of the out-of-kilter algorithm.

Defining
|

f'o, : A9 > R with
[ +A, ., a€ 4*(C,)
[

(f', )a=}' —A, A€ A (C, )y v =]t (74)
|0 -e#ac)

where (4* (Cv )W i (Cv )) is the partition of the arcset A(C ) of



258 H. J. CLEEF, W. GAUL

cycle C, according to the cycle-flow direction one has

{

.‘f\'—f'=' z foy

ve=]1
(see e.g. [8] for the use of cycle-and cocycle-representations). Now, for
£ =7 w () =w,i€N"Y,
the assumptions of Lemma 4 are fulfilled, see Lemmas 2 and 3.

But in-kilter arcs remain in-kilter and - capacity-feasible circulations
remain capacity-feasible during the out-of--kilter algorithm, so for

@ =+ Ef’ov
y=1]

and W) i € NP B, 20, ..., t (75)

the assumptions of Lemma 4 are fulfilled, and (k(w o 8 0,a & A4)

@ B A wm
DRI T S A
aCAd ac4

-> e =D+ D K (o)

acA aEAd

(@ M @
< 3 K reen< e Dk 120
ac A acgd
(@ b —
= z kﬂ f’a -
a€Ad
Now, (34) being valid one gets from Lemma 1, using the fact that

fa=fe=f=7'14 (see(32)
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- 7 o 7
D ket > Ee)=> ki +> K
aEA iEN aEA iEN
e n (@ )
=3 &k fu+ B

ed
(ﬂ' w I\ (v’ )
k

(34) ac A

ae

- Dkl 216"
acA ien

A A ! "
(where f'= f'/a is the “quasi”-flow corresponding to f’) showing

that f is not optimal in (8). This proves Theorem 2, []
PROOF OF LEMMA 5 :

Notice, that (48) is true by (33), (52) when the modified version is
started and remains trivially satisfied if

(:’ :ll . (ﬂ’ Il)2
O0=c < flma < €, (76)

(8 a) s @)

as (s, g) is in-kilter arc, and because

) (2* M2
fwma=c

(8 @)

is impossible (see the proof of Theorem 1), the only case to discuss is

7 (@ an A
8 == c ==
(% q) )

which is only possible if Ny = N, = N.
Then, from Lemma 3 it remains to check (61°7) but

JENsAN;NN ® implies that
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@M e me -

f_-;(m e Pawn >0 (77)

<
@s §) c(m > Ta

(see also the proof of Lemma 2) and 'selecting (g, j) as starting out-of-
kilter arc and supposing that (48) is valid, forces s € Y and, of course,

q € ¥ to avoid a circulation change because of (35). By similar argu-
ments

\

jENanFmNe

I @m @m :
= =
S n g8 S Bi» sy > 0 (78)

and selecting (j, s) as starting out-of-kilter arc and supposing that (48)
is valid, forces ¢ € X and, of course, s € X to avoid a circulation
change because of (37).

To summarize, one gets in all cases when using the starting out-of-
kilter arc (g, j) or (J, )
wHee . ; (79)
X , jE Ne

and the dual phase according to (42) after updating according to (47)

shows that (48) remains true during further steps of the modified
version. [

PrOOF OF THEOREM 3 :

First, it is shown how a new graph G@ M s created and an up to
now undetected circulation change possibillty is found.

Discussion is restricted to-the more complicated case Naah}\_T,=N
(because otherwise (76) holds and (s, g). can be used in either direction
according to kilter-rules). Take, see (77) (case (78) is similar and
omitted), :

jE N3y N Ny Ng
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and (g, j) as starting out-of—kiltgr arc, If, see (46),
0-=0"-=ﬁ,,<6(x’ %) (80)

there exists I € N, N X with, see (36),
7T:=(Yl+3:)PF(V:=E':) and !-:lﬂn-

Now, because of Ny=N,;=N one has ! € N, and from (79)
{g, s} C ¥ and (, s) € (&, Y) is in-kilter arc with

ame o, =

‘i‘n_ﬁfb 030 = flom= ¢ =—g.

(I 9
Define

— { Xi— l 3 £= l
= -
x; , otherwise

(for (78) one gets x=xi+1, if i=l, =x;, otherwise) and construct the

“new graph G . Choosing

I f-;' T Au;r":) A A, ®
futn{

0 , otherwise
it is easy to see (by arguments as used in the proof of Lemma 2) that fT
is capacity-feasible in G M, Additionally, defining

al { wi— (i +8)Priv=g) , i=I
W= e

Wy , otherwise

(for (78) one gets 1;‘=1;,+(T;+8,)Pr(v;=l;4). if i=I, —v;c, otherwise)
it is easy to see (by arguments as in the proof of Lemma‘3) that for

f’, ;;u, i€ N‘;, ;’, kilter-states are unchanged for a € AP B 47 ‘-”,
thus eg. all arcs a € A U 4, Temain in-kilter which is needed for
application of Lemma 4.
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So, (g, j) is still out-of kilter but for (/, 5), now one gets
(;’ ?)1 (T;' W2

- - -
%a, =P 0=0,f"w n =¢ =c
) (s 8

shovi;ing that, remember also (48),
(g, j), Pi given from the construction of X (see (35)), (/, 5), (s, q)

describes a cycle for a circulation change in G'””  with respect-to

f £ ;t, i€ N® "T; for which application of Lemma 4 yields an improved
solution. Now, continuing with the standard version of the out-of-kilter

algorithm with respect to G ™ leads to a situation as described in
theorem 2 with - signs replaced by “=" signs. If

0<0*=0<b 1) (81)

then, first, a dual change according to (42) and updating according to
(47) has to be performed but the starting out-of-kilter arc (g, j) according
to (77) fulfills (g,/) € S, and remains out-of-kilter arc also after the
dual change because of (81). Then, the next dual phase of the modified
version with the same starting out-of-kilter arc (g, j) leads to the situ-
ation (80).

Thus, whenever 6* is determined by (46) a new graph G M is
created and continuation with the standard version of the out-of-kilter
algorithm is suggested because of simplification of the solution
procedure. Otherwise, 0% is always determined by (43) leading
after a finite number of dual changes to an enlargement of N, according
to (44), (45), but N, is a subset of the finite set of nodes of the graph.
This, if (46) does not occur, the “‘modified version of the out-of-kilter

A e
algorithm” will terminate with Ny=N and o, i € N (e M g, t. condition
(28) of Theorem 1 is fulfilled. [

5. EXAMPLE ;

To discuss and demonstrate the different possibilities which can
appear in the suggested algorithm, an example of simplest form is taken
where the underlying graph G=({1, 2, 3}, {(1, 2), (2, 3), (3, 1), (3, 2)}) (the
incidence-mapping is omitted) with its arc capacities and arc costs given
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by the 3-tuple (c: i c: , ko) is shown in Fig. 1, the data of the random
variables in Table 1.

- 1g51)
s 2 iy
Fig. 1
node | (Vin pir), I=l’ 21"'1 r Vig Vige "HJ

1 ) ( 6) I ) ( ] )
—3,—" » _L'_ ) ], BT L 2: 0
10 10 ( 10 0/ | _a5 e

1
2 '—23_%- )! (0] -;_)’ (2) T) —20 20
1 7 1 g A=
3 (0, T‘ﬁ' ). (]l l"o_), (21 _1-0' )' (8: -]_0") _'20 20
Table 1

Fixing this situation the only data which remains to be specified
are the cost-vectors for compensation v, 8.

(1)) 3=(0, 4, 1), v=(1000, 0, 1)

Starting with the capacity-feasible ““quasi”-flow /=0, all u:( f)=0,

i € N, and the following =, values can be chosen as starting values
g=(—10,0)

x=(2,2,1) = (82)
(13) h=(1,2, 1)
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which gives (by (14))

N1=N8=¢: NB={13 21 3} I (83)
and the graph G'”’ » shown in Fig. 2, @ (where the 4-tuple assigned to
each arc of the graph gives the lower, upper capacity, the arc cost term

and the arc value of the optimal circulation, the value assigned to each
node the optimal dual quantity determined by the out-of-kilter algorithm).

Fig. 2 a

In practice, when using an out-of-kilter subroutine working only
for integer data, because of the rational probabilities multiplication
and re-multiplication by an appropriate positive constant is necessary,

and done here for the cost term. | This gives the optimal circulation f*

and the dual quantities ;'1, i € N'U {g, s} with
f—-’m s)“’?'(sn =" o=f"w a=1; f'u H=0, else
and
;1'—_‘-0, ;,-;3'=;n!= ;-I;q"'F'—'699'8
leading to (see (25), (26))
L 3S(699:8, 0,:0) : w=(0, 0, 0)
and (see (29)) '
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because 1= 699,85 (3112 . Pr(v=g,)=(0+1000) - =600.  Taking
(see (30)) ‘

g=(~3,0,0)

x=(1,2,1) == ,- (89)
2 (13) h=(-1,21)
gives

Ni=¢, Np={1}, No={2, 3} (85)
and the new graph G M shown in Fig. 2, b.

Notice that A" " N AW B= 410 Wihus, fh: | A(;’ " is a capacity-

feasible circulation in G‘Tf’ » according to Lemma | and will be used as
starting circulation for the next application of the out-of-kilter algorithm
(see (31)) together with the starting dual quantities (see (33))

Wy =—99.8, w=ws, i € {2,3, , 8}

giving
J’\' .'\, I\' A' A,
flas o=@ =f ' 0=3 @ =S " n=2,
A, A,
o a=L I =0, else
and

A AR A A
Wy = —601.8, wy=w;=w,=—699.8, ws= —~T701.6

as optimal quantities.

Because a circulation change occurred the procedure is restarted

with x instead of x according to theorem 2.
Continuing in the same way leads to the following complete

sequence of x-vectors A
2,2, 1) (1;2,1) » (1,2,2) = (1,2 3). (86)

The sequences of the underlying graphs and its optimal guantities’
which are used for the optimality checks and, if necessary, for the deter-
mination of the subsequent problems, are shown in Fig. 2,
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Fig.2 d

Only for the last problem the details for the optimality check are
explicitly given :
X (l’ 2, 3)

wy=—601,8, Wy=wy=w,=w,=—T700 =

A=(98.2, 0, 0)
P‘n(ol 0, 0)
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As A=0, i € {2, 3} and w=0,i € {1, 2,3} trivially ~satisfies the opti-
mality condition (28) (see 7, (9.2)) and

A=98.25 (1t 3,) « Pr(vy=g1)=(0 +-1000) - Pf(Vt='le1)

=1000 « (0.1)=100
the “quasi’’-flow
fis n=3; fu 2 =fta 3=/1as 2=0

is an optimal solution of the stochastic flow problem.
(I $=(0, 4, 1), y=(10,0, 1)
Starting with the capacity-feasible “quasi”-flow f=0, all uf (=0,

i € N, and the following x,-values can be chosen as starting values
(see (82))
g={_l: 0, 0)
x=(2,2,.1). = \ (87)
(13) h=01,2,1)

and the graph G'?* » is shown in Fig. 3. a. Application of the out-of-
kilter algorithm gives

I o= " 0=t o=f wo=11"wn=0 else (88)

Filg. 3.0

and

wy=0, Wy=mWy=We=Wy= —6.8 (89)
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leading to

‘i.’a(ﬁ.s, 0, 0), ;'“(0; 0, 0)
and with
No={2,3}, Ngy =6, Ny ={1}

to the new x-vector

x=(1,2,1) =
(13)

and the new graph G* » shown in Fig. 3, b.

{ g=(=3,0,0)
h=(~1,2, 1)

But now application of the out-of-kilter algorithm using

S oa="av=f"0n "‘f'(u o=l f'u, =0, else  (90)
and

Wi==6.0, WymWy=, - W= —6.8 (o1)

as starting quantities, does not lead to a circulation change and in view
of theorem 3 the modified version of the out-of-kilter algorithm should
be applied.

Using again (90), (91) and (1, s) as out-of-kilter arc gives
(see (37), (38), because 1 € Ng )
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Y=(1,3), ¥=(2, 5, g}, 6=@st 7o) . Prra=l)=1.4

$i={(2, 3}, Sa={(1, 9)}, O(g y) =min {18, 0.8}=038

8*=min {8, B(X’ 'ﬂ}=0-8=0(§_f’ '}7) < 0y (Y2)

and according to (42)

If —6.0 i€ {2,s q)
w:' ={ —6.0 =il

|

L —6.8 i=3

Because

* *
« = =0
14 14

the arc (1, s) is now in-kilter and (see (45))
Np={l, 2, 3}

thus the “quasi”-flow corresponding to the circulation given in (90) is an
optimal solution of the stochastic flow problem. In this case, in view of
(92) the standard version of the out-of-kilter algorithm would also lead
to the optimal solution. This argument was also true for all used test-

problems.

Thus, the authors ¢ njecture that in practice application of a
standard out-of-kilter subroutine is satisfactory for finding an optimal
solution of the stochastic flow problem (by selving a finite number of
minimnm cost circulation problems) a result similar to the situation of
degeneracy in linear programming, where from a theoretical point of view
the “modified’’ version is necessary to ensure finiteness as seen in the
proofs.
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