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Summary: 1If for a project (described by a non-empty set of activities, a relation on this
sot of activities the transitive closure of which is a striet order, and activity-completion-
times assigned to the single activities) the activity-completion-times are assumed to be
random variables a two-stage stochastic programming approach can be used for a cost-
oriented project scheduling model. Completion-time estimates for the activity-completion-
times are computed in such a way that, in order to meet a prescribed time-constraint for
the project-completion-time, the expected costs for performing the activities according
to the computed time-schedule are minimized. An example is included for illustration,

1. Introduction

Let be A={ay, . . ., a,} & finite non-empty set, 0 4 X A a binary ordering relation
the transitive closure of which is a strict order (irreflexive, asymmetric, transitive),
Y, R, acA. The tupel

(4,0, (Y, acA))

(interpreting A as a set of activities for which, due to technological constraints,
an order according to 0 has to be observed, and denoting by ¥, the activity-
completion-time of @€ A) describes the usual information available in situations
when a time-schedule for the performance of the given set of activities is needed.
For the coordination and supervision of the activities graphtheoretical conside-
rations have proved useful, see e. g. Forp/FULKERSON (1962), FUuLKERSON (1961),
(1962), (1964), GoLENKO (1972) and are adopted here (see e. g. KABRKES/MOH-
RING (1978) for a deseription emphazising on order relations).

1f the activity-completion-times are random variables the project-completion-
time is a random variable the distribution function of which is difficult to obtain.
Thus, efforts have been made to determine hounds for the expected project-
completion-time, see e. g. FULKERSON (1962), GavL (1981), Gorrnko (1972),
and bounding distribution functions for the distribution function of the project-
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completion-time, see e. g. KLEINDORFER (1971), SHOGAN (1977). In vaN SpLvkm ',
(1963) one of the first attempts to apply Monte-Carlo methods was formulated. '

As project-scheduling can be described by linear programming a first approach {
using tools from stochastic programming was given by Cmarnns/Coorung/THOMP-
SoN (1964) within a “chance-constrained model”. The “distribution model’’ of
stochastic programming, see e. g. KALL (1976), just corresponds to the problem
of determining the distribtion function of the project-completion-time and shows’
the great computational difficulties imposed by numerical quadrature. The
remaining “‘two-stage-model” of stochastic programming is used in this paper for
a new approach to stochastic project scheduling emphazising the cost viewpoint
arising within each planning situation. Whereas standard solution procedures
for general two-stage programming problems even with restriction to two-stage
‘programming with simple recourse and finite discrete random variables — as is
assumed here — lead to computational difficulties, at least when using approxima-
tion arguments, see KALL (1974), the main result of this paper is to give a proce-
dure which takes into account the special structure of the stochastic project
scheduling problem and avoids these difficulties. This is done by constructing a
finite sequence of non-stochastic flow problems the dimengion of each of which is
independent of the number of the realizations of the finite diserete random variab-
les. Of course, the number of subproblems in the sequence can increase if, using
approximation arguments, the number of realizations is increased but a modified
“out-of-kilter”” subroutine ensures that an improvement is yielded step by step.
Thus, the algorithm is well-suited for approximation considerations e. g. when
using empirical distribution funections in situations when the actual distribution
funetions are unknown. Similar considerations are obtained in CLerr (1981) for
the general linear case with simple recourse.

For an introduction to stochastic programming see e. g. KarL (1976), and for
an extensive bibliography on papers concerning various topics of stochastic
programming STANCU-MINASIAN/WETS (1976), computational aspects for two-
stage stochastic programming problems are handled e. g. in KarL (1974), (1979),
Wars (1974), (1975), the necessary graphtheoretical tools can be found in Forn/
FuLkersoN (1962), HARARY/NORMAN/CARTWRIGHT (1965), VoGrL (1967), only
some basic formulations which relate particulary to this paper are given in section
2. Section 8 shows how optimal solutions of the subproblems are recognized to be
also optimal for the main problem. The subproblems, which are special types of
flow problems, can be solved by the “‘out-of-kilter” algorithm but to ensure
finiteness of the sequence of subproblems a modified version of the “out-of-kilter"
algorithm is needed. This modification and considerations concerning the con-
struction of the sequence of subproblems are described in section 4. Section 5
deals with a numerical example.
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2. Formulation of the Problem

Let
Da,lz (V' X’ [’ (Yxi .’L'E.X))

(as graphtheoretical representation of (4,0, (¥, acA4)) where A corresponds
with X, at least after the use of dummy arcs) denote the underlying stochastic
project digraph which means that (V, X, [) is a finite, acyclic, directed graph
with vertex set V4@, arc set X, incidence mapping f=(f1, f2) with fi: X -V,
i=1,2 (fi(z), fAx) denote the starting-, end-vertex of 2€X), vertex-hasis s,
vertex-contrabasis ¢, see e.g. Harary/N ORMAN/CARTWRIGHT (1965) for the
graphtheoretical notations.

(Y, 2€X) is a random vector defined on a given probability space (2, F, P) the
components of which describe the completion-times (under normal conditions)
for the single activities represented by the ares of the digraph with

P(Y,=yl)=1

where 42=0 is the lowest possible. (crash) completion-time, xc X. Of course, this
description includes the non-stochastic case where all ¥, have degenerate distri-
butions at y, =" y

The non-stochastic situation was described by Furgrrsow (1961) under the
assumption that costs for finishing activity x in d, units of time are given by the
linear cost-function o(dy)=b,—0,d,, d, [yl Yz], where b,, 0,=0 are known integers
allowing for associated costs of needed resources (machines, material, staff, ete.).
For varying project-completion-time constraint 2= FuLkursoN determined
project cost curves by minimizing the project costs 23 ¢(d,) dependent on 1.

ZeX

For the more general stochastic case let Xa X, be a partition of X denoting
the set of arcs with deterministic or random activity-completion-times. Notice
that X, =g describes the non-stochastic situation and X ; contains the dummy arcs
@ with yl=y, =0=0,. Now, the new approach to stochastic project scheduling
via the “two-stage model” of stochastic programming can be formulated in the
following way :

Let be i=0 a prescribed time-constraint for the project-completion-time
fullfilling Agrznai‘x Ys. For every z¢ X an appropriate time-intervall [y2, Y.l (see

(7) for the choiece of y, for 2€ X,) and a cost-function

o) =b,~od,, d.€[y, Yol» Ba=0, ::;n?estfiizi, xeX,, (1)
can be selected. For #¢€ X, the description coincides with the FurgersoN-approach,
d, gives the actual actwity-completion-time, the costs e(d,) increase if a shorter
completion-time is scheduled. For x€X, the activity-completion-time has to he
estimated, here ¢(d,) are the costs for providing for d,, units of time those resources
which are assumed to be sufficient for performing activity z. d, is called comple-
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s to be chosen before the realization ¥ (), weQ,'is

tion-time-estimate and ha
known. To compensate the nonconformity of d, with the realization of the acti-

vity-completion-time additional penalty-costs have to be defined according to

; [Q': (Ym(w) _da:) =
de( Y (w))= ]0 y Yy(w)=d,, =€ X, (2)
— 7 (Xy() —d,) =t
where ¢;, g5, are given real numbers satisfying
—qy <@z =0, 2€X,. ®3)

with the interpretation for o, =0 (as used in the last example) that supplementary
resources are more expensive, costs of not needed resources are refunded (or not

needed resources can be hired out elsewhere).
Assuming for z€ X, that ¥, has finite expectation, ¢, is & random variable on

(2, F, P) with finite expectation, and with

@df{E%” i Wi @)
G(d{c) ] xrE Xd
the “two-stage model”’-approach for project scheduling can be formulated as

TE

—mtm=k Y=, =Y, X,
where 7, i€ V, are the (unknown) times when with respect to the chosen d all
activities @ with f2(x)=i are completed. If the activity-completion-times Y, fo
x€ X, are not yet finite discrete random variables one can reduce problem (5)
to the case where the distribution functions of Y, have finite support by usin
well-known approximation results, KArL (1974).

Thus, for #€ X, let (| k=1, . .., ry} denote the realizations of Y, with

0=yl<yi=i= .- <Y, TeEN (6

fa

P(Y, =) =p,k)=0, k=1,....7, kzi pl)=1

additionally for computational conyenience
y,=max {max {y;"'}, A +1 =y;=+‘ 3
2 X,
P0)=0, Py (ry+1)=0.
Now, because of (6) the random part of the objective function of (5) can be writte

in the form

Tk
5 3 palk) pa ()

TEX) k=1
and each rpdz(y;‘) can be realized as optimal value of the linear recourse program

xeX, (M)

Pa,lyh)=min {g7ug +4z % | wl —uy =y —dg uz, uz =0}
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Thus, one gets the following equivalent formulation for (5), called SPSP (sto-
chastic project scheduling problem)

Tz
| 3 palk) (g us (k) 445w (0)] +c(d,)]+ ) e(d,)=Min!
26X, LE=1 : wexg
dy T piy— Ty =0 5 2eX, —mtm=4 (8)
d,,-{—u;(k)—-u;(k):yi, 2eX, k=1,...%2 —d,=—y%, x€X
dy=y,, *€X, w, (k) ug (k)=0, 2eX, k=1,...17z

and its dual

Tz
—aw— 3] 3 yimall) + 2 (Yl — Y athp +bg) = x|
- P

zEX, k=1
Ty
wx‘*'kz: F‘z(k)_f‘i'*'lu':::om: SEEX,, wz“f‘g+f~‘z=oz' z€X;
v, =8
0, s, (9)

Wy — W™
[z pi@) =il (=1 13x) =1} l—'u, =t

gt puk) Zpak) = 4z Palk) , WEXp B=1y oo Ts
w,=0, ui=0, u, =0,z X, v=0.

(8) and (9) describe a typical planning gituation. One has to fix d -values under
cost-viewpoints where planned time-reductions alter costs according to c(d,)
and nonconformity with the actual realizations of the random activity-completion-
times yields additional compensation costs (gains), see (2), (3). The project-com-
pletion-time constraint A is preseribed, although a project cost curve approach,
seo FuLkErsoN (1961) for a description of the non-stochastic situation, may be of
interest. Unfortunately, only for emall but unrealistic values of r, these linear
programs could be solved e. g. by the revised simplex method.

But using the underlying graph (V, X, [) a8 basis for a sequence of properly
chosen flow problems the dimension of which does not depend on the number of
realizations of Y., x€ X,, an algorithm can he deseribed which terminates after
a finite number of applications of & “(modified) out-of-kilter’’-algorithm. To ensure
finiteness restriction to rational data is made for costs as well as for the values y%

and their probabilities p,(k), zeX, k=1,.. "

3. Optimality Condition
To start with consider the underlying greph (V, X, f) and the problem
z€

—m,+m=A, d:=fz, zeX, —d,=—a,, T€X
where a,, fr, V. 8re lower, upper bounds and costs for d, on the arcs of the graph.
30 optimization, Vol. 13, No. 8
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Flow theory on graphs obviously plays a role when working with the dual of (10
& +§ (Begr—ahy)=Min!, w,+g,—h,=y,, z€X
&

v, #=8
Wy— W= 0, i =+8, t (11
(x| Fifz) =i} (@ | f¥(@) =i} l —w, 4=t

Wy Jos Bz =0, 2€X, v=0.

How (11) can be solved in terms of & minimum cost circulation problem is sho
at the end of this section and in section 4.

The connection between (10) (and its dual (11)) and SPSP in its discrete fo
(8) is given by the following theorem. For its proof one needs.

Lemma 1: For xe X, select s,€{0, 1, . . ., r.}, then @y is linear within
yr=d, =y ' (9
and given by Dy =b(s,)—o(s,) * d, with
b(s) =gz EY,— (0 +4z) (é’ Pa(k) yi)'fu +b, (13
ols)=a7 — (@F +¢7) P (Y,=9.) +o, . 2 (14

Remark: To avoid tedious discussions of special cases when selecting s, €
€{0, 1, ..., r,} the following notation is used

0, 3, =N
Zn
=

(expression (s,)) expression (s,), otherwise

AL
Now, for z€ X, select 8,€{0, 1, ..., 7.} and set
8 8yt 1
1 gk Lol y: “ 0(8;), zeX, :
%—{ g ’ ﬂz—{y:: ’ 7’::—{05“ z€X, (15
then

Theorem 1: Let d¥ ze X, af, i€V, deseribe an optimal solution of (10) a
wk, gk k¥, xe X, v* describe an optimal solution of (11).

I
: 05 =@ +0) Py (8, +1) for all ze X,

hy = (g +42) pals:) for all e X, with s, 0 (16)

then df, xc X, af, i€ V, describe an optimal solution for SPSP.
Proof: Se’o+
*— E_ g%

e - AR

then

ar, ze X, (u (&))*, (ug (k)*, k=1, ..., 1, 2€X,), af icV,
describe a feasible solution of (8).
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Set, for x€ X,, according to the selected s, and ke{l, . .., 1}

lq;p::(k) ’ k<8z
gz pk) —h3 , k=8,
= 1
AL I e R R (19)
— 0z Do) » le=s,+1
then, because of (16), (k) satisfies the inequalities of (9).
Set
( ::)l =0 (g )i <7, xE-Xr
U:l: f- o = v

My {k* » Me= { = ze X, (20)
then

w::, 'ug*, F‘.’:’ xézt, (‘u:(k), k': 1: ..y Tml xEXr)r ’U* (21)

describe a feasible solution of (9) because with (11), (14), (15), (19), (20)
ol

Ty !
k30 )= + =t +( 3 q;p,ua)) ),

=

_< Z qj{b:“")) +<gm> =Tz <h*>az>u+<g:>ux<rj

k=841

- &
=w*—qF +(gF +47) P (Y, =y5)—h¥ +gi=o0,, z€cX,
wi — g Hpg=wr =k +gz =0, zeX,

and the remaining equalities coincide.

Now, in view of duality theory it suffices to show that for (18), (21) the corres-
ponding values of the objective functions of (8) and (9) are equal. From lemma 1,
(15) and (17) the objective function of (8) can be rewritten as

2 (b ::)_0(8:::) d* =+ 2 d* 2 b(‘gx)"' S b am Z’ '}"zdz

2EX, 26X,
= X bls)+ Y/ bx—lv*—Z (Bagr — o)
vEX, xcX g peX

where the last equality follows from the duality of (10), (11) and the assumed
optimality of d¥ x€X, zf, i€ V, for (10), and of wj, g}, hy, x€ X, v* for (11). On
the other hand, using (19), (20) the objective function of (9) can be rewritten as

— W%+ 3 (Yoh e, >0 —Yul02Dey<r, T02) + 2 (Yahis — Y29z +bz)

zEX,
~ 5 (5 ) i)
zeX, =1 8,=0
— 0, (( Py —y"xq:m(k)> +(yE g *).m)
zeX, \\k=8z+1 =ty
==t + 3 be) + J) byt ) (Wahs—yuf)
z€X, zeX g zeXg
+ EZ’ (yz<h*>r._.,>u +<J h*>az=u y::(gz)uz-:f,’. (y o >"a:="x)

and, with regard to (15) the theorem is proved. M
30%
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Now, it is obvious that by selecting &, 2€ X,, and using (15) the feasible region
of SPSP is reduced to the feasible region of the maximization problem (10).
Assuming that optimal solutions of (10) and (11) are known, theorem 1 gives &
sufficient condition for the case when an optimal solution of (10) is also optimal
for (8). Thus, for handling QPSP a finite sequence of deterministic project sche-
duling problems of the form (10) will be constructed each of which can be solved
by suitable network flow algorithms. Standard network theory is not directly
applicable as the objective function of (11) is not linear with respect to the flow
but it is easy to verify, see ForD/FULKERSON (1962, p. 155) for similar conside-
rations that, using the (slightly)
modified graph (V, X, )
V=V
X={3’ifl zeX}U{w, | x€XX}U{xo}

@), z=mg, zeX, k=1,2

f(Z)—{(tu 8), #=%p L

and
—fz, 2=%15 wveX
C;= A ) 2=qy
1-%, z=ay, @EX

zeX

-} V5 1 z2=xy, ®E€X
u‘_{+a=, otherwise vel .

(notice, that y,=0 for all z€ X because of (1), (3), (15)) the following circulation
problem ‘ .

Z ¢.w,=Min!

X '

i = S w=0, ieV (25)

(@11 =i (21 12y =i}

o=w,=a, 22X
is equivalent to (11).

An efficient solution procedure for & circulation problem is the “‘out-of-kilter”
algorithm which determines an optimal circulation together with certain optimal
vertex values, see FORD/FULKERSON (1962, p. 164) for more details or the next
section. But, if

w¥, z€ X, decribe an optimal eircula.t-ion} for (25)
7, i€V, describe optimal vertex values
then ;
wi=wk +wy, =y, —Wh
< e LBV o g
and
)= —3F, € V(= )
d¥=min {B,, Ty — T} » TEX
describe an optimal solution of (10), (11).



Project Scheduling via Stochastic Programming 457

4. (M.o.o.k.)-.»\lgorithm and Sequence of Circulation Problems

A modified version of the “out-of-kilter” algorithm is needed to ensure that the
sequence of solutions of the cireulation problems (25) contains an optimal solution
for SPSP after a finite number of steps.

Choose an arbitrary cireulation w,, € X, and arbitrary vertex values ; 1€ v,
for problem (25) and use the abhreviation

C.=C,+The Vi) ZEX . _ (28)
Recall, that ze X i8 called in-kilter (i.k.)if '
=0 w,=0
g, 1 <0=>w, =4, zeX (29)

‘:0 =w.=a,
otherwise out-of-kilter (0. 0. k.).
Denote X,={z | z€XyU{z:| € X,} and use, for z€X,, 8,€{0, 1, . . -, 75} the
abbreviation
g3 (q: +'SI.=_)P; (‘g;r+1) g BT

"”“"”{(q: . e e
(notice that because of (8), (8), (T) €,(ra)= 0, €,,(0)="0, e,(8,)=0 otherwise) and
call an (i k.)-arc 2€ X, in-kilter-critical (i. k. c.) if

a,—e,=w,=4;, *=T (31)

0=w,=el8), =% 5,0 zeX,

0=w,, 2=29, 8;=0
The known (0. 0. k.)-algorithm consists of an initial phase, & labeling phase, &
cireulation-alterration phase and a vertex value-alteration phase and tries to
alter the circulation and/or the vertex values in order to find a situation in which
all ares are (i. k.) with respect to the actual circulation and the actual vertex

values.

" Assume that 2® is (0.0.k.)-arc for which a w{® — increase (or — decrease) ac-
cording to (0. 0. k.)-rules is possible. Set f)=m, fIE*)=n (or PA(z®)=m,
f2(2") =n) and label m.
The modified “out-of-kilter” (m. 0. 0. k.)-algorithm differs from the (o0.o0.k.)-

algorithm only in the following

Modified circulation-alteration phase: 7 has heen labeled, i. e. & cycle C with
are set X(0)=X+(C)UX~(C) has been found where X+(C), X-(C) denotes the
set of ares z for which a w.-increase, -decrease of value A, would be possible.
Determine

A®=min{w,‘—y,+e,1(s,]l:cﬁX’(()) and (. k. ¢.)}
.d@:min{a,l(s,)—w,,jzgex*'(c) and (i- k. ¢.), 8;>0} (32)
A =min{d®.d@,d,}
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1f A =0, perform

w,+4, 2€X7(C)
w,=Ws » 24 X(C) (33)
w,—4, 2€X7(0)
1f 2 is still (0. 0.k.) correch the label of m (by 4), evase all other labels and goto
the labeling phase otherwise to the initial phase (to gearch for remaining (0. 0. k.)-
arcs). '
If A® —0, there exists at least one (i.k.c.)-arc T4€ X-(0) with w,l=y,,—-eh(s£)
ez (85)=0=Ws= yybut 18 (i. k.)-arc=Cz = 0=Tjiz) —

(Notices£<r,hecmime8£=r¢
rz+ ‘g
21 4 contradiction t0 (7), see

_{s,—l—l , a=%

L otherwise :
zc X,. Erase all labels except for m and go to

(27))- Change
(34)

and all values which depend on $;

the labeling phase-
» lfd®=0,there exi

sts ab least one (i. k. c.)-arc 7,6 X+(C) with w;;:e;ﬁ(s;) and

8~>0. Change
(35)

il {sx—- 1, a=%

T [ otherwise

and all values which depend on sy,
0 2= 52

»=a, (the arc parallel to Za)

otherwise.

go to the labeling phase.

hange to anew cireulation problem. The (m. 0. 0.

d in the following

z€ X, Alter

w, =\ W +e;=(a.;).

Wy s
Erase all labels except for m and
Notice, that (34), (35) cause & C
k.)-algorithm will only be applie

standard situation
w,, 2€ X, describe a feasible circulation for (25)-

1, i€V, are selected in such & Way that
3¢ X is (0. 0. k) then

either z€{x; | 2€X} and é:=0

or Z2€ {2 | z¢ X} and &;>0-

(36)

One gets

Lemma 2: Assu
e X If by application of the (m.o.0.
phase 3| performed then circulation alterations are
remain (i. k. c.) and the starting (0.0 k)-arc becomes (i. k. e.) wher

new problem (25)" may OCCUT

In the following, relations
(25), (25)", have to be discussed. The ;
of the new problem (25)', for the old problem

me standard situation with at le

found s.t. all (i. k. c.)-arc
¢ a change to

ulation problems, denoted b
d for all agsociated quantiti
er that it suffices

hetween successive eire
_potation is use
(25) rememb
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Project Scheduling
seloctiag {0, 1+ - #ayy 9€Xp %ot By 7 wEX s (15, reepectively
(23), (24), to apecify the gituation. :

ol circulation of (26). In view of (26), (27), (30)

Let w?, z€ X, describe an optim
the optimality condition of theorem 1 is rewritten as
w:. =Yz "ﬂz.(am) ) g
w =,,82) » 8,=0 zeX, . (37)
Agsume that (37) fails to he satisfied.
Using the following partition of X,

a, 6y 2€X see

Xo= {xexi‘ | 0 éw:;"‘Yz_eq(am)}
Xe.:{xeX, | g, =>0,,(82): 8,= 0}, Xyxer= XXV Xg) ~(38)
(that (38) is indeed & partition of X, follows from (3), (6), (28) together with
oy <P TEXp and the fact that (25) is formulated as minimum-problem yielding
wh > 0=z, = y,) to define
s, +1, 2€Xo
: sj=1s,—1, 2€Xe (39)
Sg1 xexﬂ.k.c)
and, according to (15)
0 y [y;:?=ﬁn: . yzf-l-’ t xE‘XG
az= y:::t d ﬁ = y::‘i’!:%’ xEXe
z fzs & EX(i.k.c:-..)u X (40)
- ) VYa— es(8) & eXg
R & Yz=\V= +5,(82) » weXg
Yz+ 26 X ey X
and, according to (23), (24)
alc,zeX
definition of X and

' (One has 8,=0 by

gives the new circulation problem (25)
(i. k.) are=E, =07,

s, =r, because e eXomfi™ Oé’a)w;‘?”x' hut @
. ==y B contradiction to (7))

With ' :

wi +6,(8:) =%
b wi=wh —€(8,) » Z=T2 2€Xo fcX (41)
‘ ws otherwise '
| : r=1f, i€V ' (42)
one gets.
(25)"-

ze X, describe @ feasible ciroulation of
)-are AWe X, for (25)"-

establish standard situation with (0. 0. k.
st consists in checking whether the determined opti-

Lemma 3t w,,
' w), z€ X, Ty 1€ v,
Of course, the main intere
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~ the knowledge of an optimal solution of (10) for which one can show

mal solution of (25) respectively the new feasible solution of (25)" according to
(41), (42) yield an improvement for SPSP.
With (26), (27) the knowledge of the optimal solution of (25) is equivalent to

Theorem 2:
(a) d¥, we X, af, i€ V, describe a feasible solution of (10)" with

X b —ole) di= 3 b(s,) —ols,) d .
ZEX,

ER :
(b) If Xg={w€Xg | &, >0} =+ then
LA min {ﬁ;, ﬂ;‘:(,)—nﬁ( )}1 xTE Xe

d; —{d:, " otherwise’' ze X,

al, i€V,
describe a feasible solution of (10)" with

‘A% < ‘v
“Zx' Vally me‘é_’ Ve
Proof: Choose x€ X g then w} <y, but 2, is (i. k.) for (25) with respect to w},

ze X, t¥, i€ V, therefore (see (15), (27), (29))

Ty — iy =Pa=ty<Prmag= A=y (=) <f;
and (see (13), (14)) ' |

bls,) —blsn) = (4 +45) Pals) U :

X (0(8,) —0(8,)) * A =(aF +45) Pals) Y-
Choose z€X 5 then wk >0, but , is (i. k.) for (25) with respect to w}, z€ X, 7f,
i€V, therefore (see (15), (27), (29))

Ty — Wiy = %= Ba <A = =y (=i — ey =B
and (see (13), (14)) ‘ ‘ _

Bls) —b(s.) = (0 +47) Palsa) Us" (44)

X (0lsy) —0(s,)) di = (a7 +45) Palsa) Ya
For 2€ Xy, UX, all considered quantities are unchanged. Thus, part one of
(a) is checked, part two of (a) follows with (43), (44). To prove (b) consider (see

also (15))
TEX g=yi=Va— s (8,) >Wh =0=y,>0 forxe Xg

7€ K =0, = 0=0fice) — )iy > Pa=>Pa= =P

\

(43)

thus,
a.;:ﬁ@:d; qd;'=mm {ﬁ;’ nj*"(g)—n}'l(m)} §ﬁ; fOr :UE Xs

and

X vl —d)= Y y,(d;—d5)=0. m
zEX 2l
Thus, by theorem 2 (a) an optimal solution of the old problem (10) can be used

for the new problem (10)' and leaves the objective function of SPSP unchanged,
theorem 2 (b) gives an easy check for improvements. The next theorem shows
how optimality for SPSP is reached.
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as long as no vertex value-
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Notice, that whenever a new problem (25)" is started it is in standard situation,
(0. 0. k.)-arcs z*¢ X, exist, see lemma 3, and it Temains in standard situation
alteration phase is performed, see lemma 2. Thus,
assume standard situation for (25)° with respect to @, z€ X, 7, 1€V, and take a
starting (0. 0. k.)-arc 2*€ X,. Denote by L the set of labeled vertices needed for
the first application of the vertex value-alteration phase. Define for M, Q@< Ri=1)

(O, @)={z | 26X, U2 €M, =) €Q}

and :
[M, Q)={x | €X with {zy, ag} (M, @)}

then, using the abbreviations |
B,=f{x|zcX, P)EL, fax)e Ly =[L, L]
By={z€B,|&,=0% By,=x€By| &,>0}
Ba={z | z€ X, P@)€L, fAa)e LY =(L, L]
By ={z€ B, | &, =0}, Bn={zcB| &, =0}

one gets .

Lemma 4: (a) o€ (L, Ly=>,,=0, (by) Z€ B =1, =7, (19, =0)

(bo) @€ By=1b,= 0, 0,,= 0, (by)x€ 322'? ("T’m, EY;L Wy, = 0.

Theorem 3: Let (d3), z€X, (k) i€V (resp. as, xe X, =i, V), describe the
optimal solution of (10)" (resp. of (10)) determined by tﬁe- (m. 0. 0. k.)-algorithm
applied to (25)' (resp. to (25)) where for (25)' the starting solution was w;, z€X,
7., i€V, of Lemma 3.

If during the application of the (m. 0. 0. k.)-algorithm to o

() a vertex-value alteration phase was performed then (d3)'; € X, (=), i€V,

deseribe a better solution of SPSP than at, xc X, nf, i€V,

(b) no vertex-value alteration phase was performed then (d*y, ze X, (@f), i€V,

deseribe an optimal solution for SPSP.

Proof: Assume that for i, ieX, 7, i€V, problem (25)" is still in standard
situation, 24 ¢ X, is the actual starting (0. 0. k.)-arc with 6;5 =0 (i.e. {éz‘;')‘ P'ioy)
and L is the set of labeled nodes which, now, has to be used for the application
of the vertex value-alteration phase for the first time. Let

5 e, o €L
denote the new vertex values. ;
From the circulation conservation condition one has for ,, 2€ b o
; u-Ja= 2 wz
2E(LLY zeLD) -

and from lemma 4
2 0= 2 (104, +ib,,) = Z’ (10, 'H.‘jza)g 2 Wy, = 2 7’; (47)
ze(L, Ly xE By e By TE€ By xE By

| {Ti +‘|9 5 iEL , ; (45) "

7 _ (46)
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and 1 :
wt= 2 (mﬂ +fﬁ¢:)= 2 (ﬁﬂh +ﬁzz)= Z ﬂjm< 2 1"; (4‘8)

ze(L, Ly x€ By € Baa TE By @€ By

where the strict inequality is induced hy the chosen actual starting (0. 0. k.)-

arc (.
Constructing for x€ X with

i, i L or fi, jyc L=d, =,
ZeBnﬁ'f;-’ ff=T; —T; —‘19'<T; ‘—Tgigﬂ;ﬂ'dm:d;—‘ﬂ'

() =i, f2(x)=j the new quantities d,, veX by

xE Bi-_,-:ri‘i-f,='r;—-’l:;—ﬁéﬁ;ﬁd,:d;

2€ Bomt— =71 +0—7; ~p=d,=d,

2€ Bra=t—2=1; +0—7; =pr=d,=d, +0
yields

5 @—dd= 3 (—0) vt F o= v X 7s) #=0
zeX x€ Byy Z€ By 2€ Bn ®E By
by (45), (46), (47), (48) and #=0.

But d, 2€X, Z=—T; ieV is a feasible solution of (10)" which proves (a).
The proof of (b) follows by repeated application of lemma 2 unless all arcs of X,
are (i. k. c.) and, of course, all arcs of X\X, are (i. k.) which means that the
optimality condition of theorem 1 is fulfilled. ®

Now, the suggested solution procedure for project scheduling via stochastic
programming can be summarized as follows:

First, find a feasible starting circulation problem of the form (25), e.g. check
(by one of the known path algorithms) whether the prescribed time constraint
4 is compatible with the lowest possible completion times 42, x€ X, in which case
the minimum cost circulation problem (25) (with ¢,=0,2¢€ X,) has feasible
solutions and can be used as starting problem.

Second, a sequence of circulation problems of the form (25) is generated where
a new problem is created aslong as the optimality check of theorem 1 fails to be
catisfied for the actual problem. Here, lemma 3 ensures that at the beginning
each problem is in standard situation and has (0. o. k.)-arcs.

Third, the difficulty which arises when the value of the objective function of

' the stochastic project scheduling problem determined from the optimal solutions

of successive circulation problems (25), (25)' remains unchanged is handled by

application of the (m.0.0.k.)-algorithm. The modification ensures that either an
improvement for the objective function value or optimality is yielded.

Fourth, this monotony-argument and the assumed rationality of the data cause

the finiteness of the procedure.
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5. Example

To discuss and demonstrate the suggested algorithm an example of simplest form
is taken where the project is described by the set of activities A={ay, ..., a5}
the random activity-completion-times ¥, ac A, the relizations of which together
with the costs for compensation are given by Tab. 1, and the ordering relation
0cAxA which is represented by the arc-adjacency relation of the graph D, ,
shown in Fig. 1 where the activities correspond with the arcs of the graph as
indicated. '

To stress the stochastic aspects b, =0, =0, ¢;€ 4, are chosen in this example.
Prescribing the project-completion-time constraint A=9 yields the value y, =17

for all a € A (see (7)).

Tab. 1

activity a; vk k=1,2,3 Pafl), k=1,2,3 ¥, ba; O a5, Ga
ay &1 I 0.25, 0.375, 0.375 1 0 0 4. -1
aa 4,6, 8 0.875, 0.125, 0.5 SR,y g ¥ L
iy 4, 5, 6 0.75, 0.125, 0.1256 3 0 0 5 -3
a, 5,8, 11 O3 o 0Tl LIS gb i " 0 8. =
ag Gyt _0.125, 0.4, 0.475 1 0 0 10 —2

Using the graphtheoretical representation of Fig. 1 and fixing the starting
quantity sg;=0 for each arc (i,7) of D, the optimal solution was determined
in three iterations. In each iteration a minimum cost circulation problem has to
be solved with respect to the graph of Fig. 2 having parallel arcs between nodes
i, j denoted by (i, )y, (i, j)» and lower, upper arc-capacity—and arc-cost-terms as

given in (22)—(25).

Fig. 1 : Fig. 2

All quantities of interest for the single iterations are listed below, for notation
see also (26), (27) (In practise when using an “out-of-kilter” subroutine working
only with integer data because of the rational probabilities multiplication and
remultiplication by an appropriate positive constant is necessary and done here

for the y,-terms).
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Tab. 2
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|
| are (i, 4) %)

‘ arsy Pap  Yan  Wha Whe Il e (Bag) M ambun) A
G A S gy 6 0 0,75 6 0 1
T T A gl 0 oyl o g 8! 0 0 4
| g 0 F 8 Sy 15 5 0 1,5 5 0 3
| O R B, 40 O o, 3 OB e 70 0 5
| N i G Tl U 0,2 - 4im 1 0 0 5
f af=0 af=1 af=4 af=9 Tteration 1
[ ¥ Tab, 8
| are () sy %6 Pap  v6n Cla “lae Gt Canlsen) M Caman) Y
e Rl O R R 4 0 0,75 4 0 1
e L A A 0 0 1 0 3 5
I e:s) o 34 5. qh 0 1 1,5 0 0 4
| balyds 1. < &0 8 57 Lk 0 L7 04 O 0,47 o8
Byt 822030450 0 0 1 0 0 4
af=0 af=1 =f=5 nF=9 Tteration 2
Tab. 4

are (4, J) 8¢,

win Ban Yep @y v W centan) Mn cenlen) i

(1, 2)
(1,3)
(2,9)
(2, 4)

1 (3, 4)

af=0 =

OO O

LS

Those values for which the optimality-

* The optimal value of the nbjecti\:'e functio
time-schedule '@, of iteration
responding activity should be p

For a more realistic example consider the
deterministic and random activity-
with the costs for compensation are given by
0c A X A represented by the arc-adjacency re
Fig. 3 where the activities correspond with the arcs of the

Choosing the project-completion-time constraint A=30 yields

Using again sg;=0 for each arc (i, N eX,
optimal solution wag now determined in 8 iterations.

=1 a¥=5 =aFf=9
3 4

1 3 4 4
4 ] 6 6
3 4 b 4
8 11 5,3 5,3
1 6 10 10

ys,=31 forall a; 4.

5,3

=]

0
0
0

Tteration 3

3 gives dfi

0
0
1
0
0

0,76
1
1,5
0,3
1

check of theorem 1 fails to be satisfied are underlined.

n is 131.275. The computed optimal
=1=y, , indicating that the cor-
erformed as quick as possible.
set of activities A={ay, . . ., @y}, the
completion-times Y,
Tab. 5, and the ordering relation
lation of the graph D, 5 shown in
graph as indicated.

of D,,; as starting quantities the
In view of space limitation

5,3 0
0 3
0 0
0 0,4
0 0

ac A, which together
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Fig. 8

only the generated sequences {8tinpto=n=7 for the arcs (i,j) of D, 5 are listed in
Tab. 6 together with the optimal solution dg;s for (8) yielded from the last
iteration.

The optimal value of the objective function is 2208.000, the optimal vertex

Tab. 6

i
arcgs Sl n=0,...,7 Al

(1, 2 0 — 0 1
(1, 3 00000010 3
oot e R SR 2
{2, 7) 0.1 222100 2
(2, 12) 0 deterministic 0
(g 0T 00— 3
(3, 5 0 0 2
{808y 0.0 2 9
(4, 10) 0 deterministic 12
(4,11) 01 23 4 5—5 12
(5, 8) 0 deterministic 13
(6,12) 0 deterministic 12
(8,14) 01234 — 4 15
(7,12) 0 deterministic 24
(7,49) 02 34— & 25
(8, 9) 00 0 1
(9,12) 0 deterministic 10
(9,13) 01222233 9
(10, 11) 0 deterministic 0
(10,12) 01234655 5 11
(11,125, 10, 28 3 11
(11, 14) 0 1 1 9
(12:)26) W0l ———— ') 1
(13,15) 01111000 2
(14, 15) 0 0 3
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values are
7y =0, =1, af=g =86, mE=5,
7y =12, =3,

g =18, Ty =19, afy=18,
TH=18, k=g iy =28,
For the described examples g computer code using the (m.o.0.k.)

developed. The number of needeg iterations wag
the tota] number of pogsible choices,

iy =27, 7f5=30 .

-algorithm wag
always smalj tompared with

.-\e.knnwledgement

The authors woylq like

to thank one th
earlier version of the pap

@ referees for hig tomments whieh improy

ed an
er. This version [3] alsa containg (he pProofs of lemma 1—4.

Referonces

[1] CrarNgs, A W w. COOPER; G. L.

TrOMPSON | Critical pPag) Analysis vig Chance-

Contrained ang Stochastic ngrmnming. Operations Research 12 (1964) 460—47¢,

(2] Creer, I, J.: A Solution Procedure o the 'I‘wo-Stage Stog
Simple Recourse, Zeitschrift fip Operations Research, 25 (1981) 1—13,

[3] Cregr, . Joi W Gavrp: Project, Suhcduling via Stochastie Progrumming. SFB-72
Prepring 367, University of Bonn, 198,

[4] Forp, T, R.; D.R. Fuixersoy - Flows in Networks, Princeton Univ
1962,

[5] FULKEBSON. D.R.: A Network (!omp:_tt-atﬂion for Project Cost Curves, Managem,
Se. 7 (1961) 167178,

[6] Furkerson, p. R.: Expected Critical Pyt Length in PERT Type Networks, Ope-
rations Research 1¢ (1962) 808817,

: Scheduling in Project Networks, Prog, IBM Scient. Comp,

Symp. Comb, Problems (1964) 73_g9

[8] Gavr, w.. Bounds fop

Model, T, Infor, & Optimiz, Se. o (1981) 4563,
[9] GoLenko, D, .. Statistische Methoden der

Netzpla.ntechnik. Teubney Verlag, 1972,
[10] HA.RARY, ¥, ; How NOR!\«MN; D. Carrwrigyy. Strueturg] Models: Ap Introduction |
to the Theory of Directeq Graphs, Wiley, 1965.

[11] Kamrggs, R.; R. Mourvg, Vorlesungen iihep Ordnungen unq Netzplantheorie,
Schriften zur quormatik, Angew., Mathematilk 45, RWTH Aachen, 1978,

[12] Kavy, p,. Approximationg to Stochastio Programs wiyp, Complete Fixed Recourse.
Numer., Math, 22 (1974) 333339,

[13] Karnn, p,. Stochastie Linear Prugrammiug. Springer-Varlag, 1976,

[14] Kavr, p.. Computational Methods for Solving Two-Stage Stochastic Linear Pro-

Bramming Problems, 1. Appl. Math, & Phys. 80 (1979) 261-271,

[15] I{LEINDORFER, G. B.: Bounding Distributions fop a Stochastic Acyclic Network.
Operations Research 19 (1971) 1586—1601,

[16] SHOGAN, A, W.. Bounding Distributions for a Stochastie PERT Network., Networ ks
7(1977) 359-381.

[17] STANCU-IWINABIAN, ILM.; M J. Wers -
Progmmming. Operations Reg

hastic Program with

ersity Press,

he Expected Duration of 4 Stochastic Project Planning

A Research Bibliography in Stochastie ‘
earch 24 (1976) 1078—1119



468 H. J. Creer; W. GauL

[18] vaxy Stvke, R.M.: Monte Carlo Methods and the PERT Problem. Operations
Research 11 (1963) 839—860,

[19] VoaEL, W.: Lineares Optimieren. Akademische Verlagsgesellschaft Geest & Portig
K. G., 1967.

[20] WeTs: Solving Stochastic Programs with Simple Recourse I. Techn. Report, Uni-
versity of Kentucky, Lexington, 1974, .

[21] WrTs, R.: Solving Stochastic Programs with Simple Recourse IT. Proe. John Hop-
kins Conference Syst. Sc. & Infor., Baltimore, 1975. i

Zusammenfassung

Falls fiir ein Projelkt (beschrieben durch eine nicht-leere Menge von Aktivititen, eine
Relation auf dieser Menge von Aktivititen, deren transitive Hiille eine strikte Ordnung
ist, und den einzelnen Aktivititen zugeordneten Zeitdauern) die Aktivititszeitdauern als
Zufallsvariable vorausgesetzt sind, kann ein zweistufiges stochastisches Programm fiir ein
kostenorientiertes Projektplanungsmodell benutzt werden. Unter Beriicksichtigung einer
vorgegebenen Zeitschranke fiir die Zeitdauer des Projektes konnen fiir die einzelnen Akti-
vitiitszeitdauern Vorgabezeiten, berechnet werden, so daB die erwarteten Kosten fiir die
Durchfithrung des Projektes entsprechend der berechneten Vorgabezeiten minimiert
werden. Ein Beispiel ist zur Verdeutlichung beigefiigt.

Peswome

Ecan s opoekTa (0NMecaHnoro Hemyersiy Muomec'rnomfi)aﬁm, OTHOLIENUHEM Ha ATOM MHOMECT-
Be paboT, TPAHBNTHBHAA 00OIOUKA KOTOPOr0 FBIAETCH CTPOTHM IOPHAJXKOM, U MPUCOENH-
HEHHEMI OT/@IBHEM PaGoraM MPOfoIHATEIbHOCTAMN) NTPOAOIKUTENBHOCTH pabor mpemo-
AOTARTCA CIyYaliHBIMI, NPUMEHNMA JBYXCTYTeHYaTas IPOTPAMMA A OPHEHTHPOBANHOLH
00 CTONMOCTAM MOJledid IaHupOBaHus Ipoexra. B ycmosuAx (GuUECHpOBaHHON IpaHMILL
BPEMEHN LA IPOROIKITENLHOCTH TPORKTA MO0 JTIA OTASIBHEX PaloT BETHCIHTE YIIPeH-
JEHUA, TAK YTO 0MHAAEMbIE CTOMMOCTH [WIA BHIIOJHEHHA MPOEKTA IO BLIMHCIEHHBIM YIIPEH-
HeHuAMKH GYAYT MUEHMAILHEMH. [IpHBOZMTCA TpUMEp AJXA HILIyCTpaluu.
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