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ABSTRACT

If the activity-completion-times of a project-network are random
variables the project-completion-time is a random variable the
distribution function of which is difficult to obtain. Thus, ef-
forts have been made to determine bounds for the mean and bounding
distribution functions for the distribution function of the project-
completion-time some results of which are shortly surveyed.

Then, a new approach using stochastic programming for a cost-
oriented project scheduling model is presented. Generalizing a
well-known Fulkerson-approach planned execution-times for the ran-
dom activity-completion-times are computed where nonconformity
with the actual realizations impose compensation costs (gains).
Taking into consideration a prescribed project-completion-time
constraint the expected costs for performing the activities ac-
cording to the planned execution-times are minimized. A solution
procedure is described which constructs a sequence of nonstochastic
Fulkerson project scheduling models. It is demonstrated by means

of an example.

KEYWORDS: Network Programming, Scheduling Theory, Stochastic
Programming.

1. INTRODUCTION

A project is described by a set of activities, a relation on this
set representing restrictions between the activities and activity-
completion-times.

A project-network, as graphtheoretical description of a project,
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is given by

Dy = (V,x,f,Yx)
where (V,X,ff is a finite, directed, simple, acyclic, weakly con-
nected graph with point set Vv, arc set X, incidence mapping
£=(£1,£2) with fl:x+v, i=1,2 (£l(x),£2(x) denote the starting-,
end point of xEX) and single-element point basis s, single-element
point contrabasis t, see e.g. Havary, Norman and Cartwright [12]
for the graphtheoretical notations. X corresponds with the set of
activities of the project at least after introducing dummy activ-
ities (The case where V corresponds with the activities is handled
€.9. by MPM, Metra Potential Method, but not discussed here.). The
restrictions between the activities are described by the chosen
project-network's arc-adjacency relation.
Yy=(Yy,,xEX) is a random vector defined on a probability space
(Q,@,Pr) the components of which give the activity-completion-times
(The more general case where additional stochastic aspects influ-
ence the project structure is handled e.g. by GERT, Graphical
Evaluation and Review Technique, but not discussed here, see
Neumann and Steinhardt [15] for a recent contribution.),
Such project-networks Dg ¢ have proved to be an appropriate tool
when a schedule for cooréinating and supervising of the single ac-
tivities of a project is needed. One of the aims of project sched-
uling is to determine the project-completion-time which is yielded
by maximizing over the sums of the completion-times of those ac-
tivities which form paths from s to t. Even under the assumption
of stochastic independence for Y. .xEX, however, the distribution
function of the project-completion-time is difficult to obtain
(activities can be used by different paths). Thus, in Van Slyke
[20] one of the first attempts to apply Monte-Carlo methods was
described. Efforts which have been made to determine bounds for
the mean and bounding distribution functions for the distribution
function of the project-completion-time are shortly surveyed in
section 2. Together with the well-known CPM, Critical Path Method,
and PERT, Program Evaluation and Review Technigue, approaches the
results of Fulkerson [8], Clingen [4], Robillard and Trahan [16]
and Devroye [5] concerning bounds for the mean of the project-com-
pletion-time are mentioned some of which are shown to be special
cases of a more general result of Gaul [10]. The results of Klein-
dorfer [14] and Shogan [18) on bounding distribution functions for
the distribution function of the project-completion-time close
section 2. As in a typical planning situation execution-times For
the activities have to be planned before the actual realizations
of the random activity-completion-times are known, .in section 3 a
new approach of Cleef and Gaul [3] is presented using stochastic
programming for a cost-oriented project scheduling model. General-
izing a well-known approach of Fulkerson [7], see alsoc Ford and
Fulkerson (6], planned execution-times for the random activity-
completion-times are computed where nonconformity with the actual
realizations impose compensation costs (gains). The planned execu-
tion-times are determined in such a way that the expected compen-
sation costs together with a nonstochastic cost-term are minimized.
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Using discrete random activity-completion times (e.g. as approxi-
mation of the actual ones) a solution procedure is described which
constructs a finite sequence of nonstothastic Fulkerson project
scheduling models. The size of the subproblems in the sequence is
independent of the number of realizations of the activity-comple-
tion times. In section 4 the new approach is demonstrated by means
of an example.

2. BOUNDS, BOUNDING DISTRIBUTION FUNCTIONS

Let m be the number of points of Dg ¢.
For Dg, there exists a bijective labelling 1:V+{l,...,m} with
1{s)=1, 1l(t)=m and xE€X=>1 (£l (x))<1(£? (x)).
In this section such a labelling is needed for the sequential de-
termination of bounds and bounding distribution functions.
For graphtheoretical considerations sometimes the notation
(V(D),X(D)) (omitting the incidence mapping and the random vector)
is used for a network D with point set V(D), arc set X(D). With
these abbreviations
p! < p? iff v(pl) = v(p?), x(0') = x(?),
p! Y p? iff v(pl ¥p?) = vipl) | vod,

x(m!Hp?) = xh) H x?)

describe the subnetwork, union-intersection-network notation. Now,

Dj,y & Dy, is called subproject-network
1f Dj, 3 is a project-network with peint basis i and point contra-
basis j. One has V(Di‘.K:{i.i+1,...,j-l.j}.x{Di’jM:f‘l(V(Di,jlx
V(Di'j)ﬂftxi), the incidence mapping f/X(Di,'% and the random
vector Yy(p, .= (Yy,XEX(Dj 4)) are mostly Shitted. If for i,3EvV
a subprojec%iaetwork Dj,y exists Dj 4§ denotes the maximal one
(notice By g=Dj,py the underlying project-network). A path Pj 4
with V(Py §)={i1se.riplig=i, in=3h,X(Py, ) =lxy, ..o %y
f(xu)=(iu,iu+1),u=1,...,n—1} is a special subproject-network.
{Pi,j)k resp. (Pi,j)k, kEV(Pi'j), gives the subpath of Pj from
i to k resp. k to j. Instead of Dgl 4y £2(x) the arc notation x
is used. I
(1) L(Dg,4) =, max ¥

+J PitjCDipj "EX(Pi,') e

is the Di'j»completion—time (L(Bl’mj is the project-completion-
time) . Next, for vEV, v>1, consider subproject-network systems of
the form

8y = (Dy y|i<v]. ;.
with B(8,)={i|i€v,D;, €8y} call &, proper (with respect to Dy p) if

1 2 1 2 _(Hi,v), @) if iy=ig=i,
(2) VDilvv'nlz:ve‘sv'nil""”D-‘-zr" {{{v},ﬁl otherwise,
(3) VP o © By p 3 Dj,yE8y:Py o= (Py ) jUB] )Y

with (PI,V) 106VC (B(av) rﬁ) ] (pl'v)l < Di'v' .
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Proper 8y always exist, e.g. Sy= {51,v} is proper. A useful proper-
ty of proper §, is, see Gaul [10],
(4) L(By,y)= max {L(By ;)+L(D, )} if 8, is proper ,
Di ,vEdy 3

To define lower bounds for the L(ﬁ]'V]-mgan let, for x%cx, Ey#
denote the integration with respect to Yy =(Yx,xEx*), E (without
subscript) the expectation. Assume, for proper 5v={Di,v}' that
T;,i€B(8y), are known lower bounds for E L(By, ), and that X, X
is a partition of X with X, EX(8y), then, under adequate stochastic
independence assumptions
(5) E LB, ,)2Ey  max [Ti+BF LDy o)) = T(8y,Xy,L(B) ),

Di'vEév
For different choices of §, and Xy one gets well-known special
cases: 1 - s
6y={Dj|Diy coincides with x with £(x)=(i,v)},Xi=0
yields
(6) =T (6,91 (B ) )= mag(rlemg vyl max(ny ey, ).

. XESy v XESy,

Using recursive arguments, if Ti,iEB 6%), are determined in the
same way as described by (6) (with T9=0), Té gives the PERT lower
bound of E L(EI'VJ. If all Y, ,xEX, have degenerate distributions,
(6) describes the CPM—apgroach.
62 =6}, x2=x(82)
v vt Sy v
yields
7 TG=T (65, X5/ L(By ) ) =Ex2 max, {T+Ega¥. }=E max, (T3+Y, ).
v viiye 1,v X5 2- LTy 2t LiTx
XEQyy, v XESy
2 ”
Using recursive arguments, if Tj,i€B(82), are determined in the
same way as described by (7) (with T{=0), T§ gives the Fulkerson
[8] lower bound, see also Clingen [43, of E L(BI’VJ.
Whereas it is easy to see that 6&=5% is proper, now, among the set
of paths Pjy one has to choose
53={Pivlpiv is path from i to v,i<v} proper,X3=X(53)
which yields 3
(8) TI=T(83,X3,L(B) ) = E max 3 {T{+L(Py) )
PivEdy :
Again, using recursive arguments one gets a method suggest by
Robillard and Trahan [16]. For the exact computation of E L{Bl,v)
choose y .
6v={ﬁl,v}'xv=xtnl,v)
which yields
Yomogh w108 ot o e 6 = =
9 - Ty=T(8y, Xy, LDy, ))=E[T{+L(By ) ]=E L(B; )
with T{=0 as usual.
Under assumptions given in Gaul [10] one can show
E L(B, ,)=1¢2TizTaeT]
and construct improved lower bounds.
An easy method to determine upper bounds is given in Devroye [5].
Knowing EYy, var Y., and using the recursive approach described
in (&),
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U'= max{U!+EY }+/% max{var L(B ) +vary }:
Vxesd X v xégif, e x

(10) Uy= ng{UE+EYx}+ gyd
X0y

o .+/(nv-1) [ma¥{2 var L (D, ,1) tvar Yxi+ mﬁi\{Z var L(Dl,i)-t-var‘!x_}‘]

are shown to be upper bounds for E L(El vl if Yx,xEx, are
btochastically independent. Here, n, is the number of elements of
B(Gv} and var L(Dl V) is an upper bound for var L(D1 v) recursively
defined by

var L(ﬁl'v)=x£ [varL(DLi}+var Yx] (with var L(51'1)=0).

8y
Lower and upper bounds for the mean and for higher moments of the
project-completion-time can also be determined if one knows bound-
ing distribution functions for the distribution function of the
project-completion-time, see Kleindorfer [14] and Shogan [18].
With restriction to discrete random activity-completion-times and
the abbreviations

Py (v))=Pr(¥y(gly=y(v)) , Y (V)= (yy s XEX (83)) 4
the following recursive définition of bounding distribution func-
tions ispossible:
Under the assumption of stochastic independence for

Yx(d\"l’,) ={Yx,x€){(6\1,}], VE{Z, SE s 'm} I

(a) Fﬁl (t) = )  plytv)| ml? FB (t—yx}].
v y(v)
(2 B 1 z z 1
(&5) P () = ply(v)) max {0, [ F~ (t-y,) |-n +11]
Dy,v ¥ v) z85}k Did v
. 1 | _ 1 , t=20,
i Fﬁl 1(t)-F51'1(t) {O , otherwise
r
Fulfill 3 ;
Fu (£) 8 F= ' () =" Pr(L{Dy ,)St) SF (€)Y, tER.
D1,v D1,v v By,v

Obviously, (11) is based on the well-known Frechet-bounds for
Pr( esl{L(Dl {V's &=y .

Under the additional stochastic dependence assumption of associa-
tion for Yx,x€x(6 )y, v€{2,...,m} (often used in context with relia-
bility problems), an improved lower bounding distribution function

l(ass) T l(ass) __
(£) = I ply(v) [x&s”' e yx)]

51 v v (v)
(12)
1 ; 20,

0 , otherwise

i 1 (ass)
with F (t)=
By 1 {

can be computed which fulfills

E‘% (t) < p},‘ass’(t) S Fg LER .

i,v l,v
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Of course, having established lower, upper bounding distribution
functions the determination of lower, upper bounds for the mean
and the variance of L(ﬁ1,v) is straightforward and, thus,omitted.
The Kleindorfer bounding distribution functions are also not ex-
plicitly reported because, although they were developped under the
stronger assumption of stochastic independence for Yx,xEx, the
Shogan bounding distribution functions (lla), (12) are tighter.

In all cases, using recursive arguments and increasing v up to m,
the desired results for the project-completion-time are obtained,

3. STOCHASTIC PROGRAMMING PROJECT SCHEDULING

Knowing the difficulties originating from the stochastic descrip-
tion of project scheduling problems as discussed in section 2 the
question arises whether a new approach might be more appropriate.
As in a typical planning situation one has to plan execution-times
for the single activities under cost-viewpoints before the actual
realizations of the random activity-completion-times are known a
"two-stage stochastic programming with simple recourse" approach
was described in Cleef and Gaul [3] which generalizes the non-
stochastic Fulkerson [7] project scheduling model. A first attempt
to apply stochastic programming to project scheduling was formu-
lated by Charnes, Cooper and Thompson [1] within a "“chance-con-
strained stochastic programming" approach.
For an introduction to stochastic programming Kall [13], for an
extensive bibliography on papers dealing with various topics of
stochastic programming Stancu-Minasian and Wets [19] are recom=-
mended, for considerations where the here described stochastic
programming model is used for the general linear case with simple
recourse see Cleef [2].
The new stochastic programming project scheduling approach is
formulated as follows:
For the arcs of the given project-network D5,t=(v,x,f,Yx) assume
(13) Pr(Y,2yg) =1, x€X,
where yQ20 is the lowest possible (crash) completion-time.
In the nonstochastic case, see Fulkerson [7], ¥, have degenerate
distributions at yy2y® but if one puts up with additional costs for
extra efforts assumed to be describable by linear cost-functions of
the form
(14) c(dy)=by-0xdy . dxE[¥R.vxls x€X,

where by,0x20 are known values allowing for costs of

needed resources (machines, material, staff etc.),
planned execution-times d, can be determined which minimize the
total costs ZX c(dy) under a project-completion-time constraint
A>0. .
In the stochastic case assume that X, Xy is a partition of X into
the sets of arcs with deterministic or random activity-completion-
times. Xg contains the dummy activities (with y@=yx=0, byx=0),
Xr=¢ gives the nonstochastic Fulkerson-approach. For XEXy
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additional costs for compensating nonconformity between the actual
realizations of the activity-completion-times Y;(u), wER,and the
planned execution-times dy (which have to be determined before the
realizations are known)
q;(Yx(m)-dx)

(15) X (Yx(u))={ 0 v Yy (W)

* ~q (Yy (@) ~dy)
have to be taken into consideration where qf, g are known compen-
sation cost-terms satisfying
vgia ax <4z S ox XEXy «

d, , WER, xEXr,

Al W

Epg, *C(dy) o+ xEX,,
bg,=

c(dy) ’ XEX g,
the following SPPS, Stochastic Programming Project Scheduling,
approach can be formulated:

b4 = min
1k
17 dx+“f](x}_"f2(x) =0 i xEX,
- Mg oy =)
yg S 4y S yx ; XEX ,

Here, m,;, 1BV, are upper time-bounds when with respect to the
planned execution-times dy all activities x with £2(x)=i have to
be completed. For an appropriate choice of yx for x€X, see (18).
(17) describes a linear program if one assumes that for XEX, . Yy
are (or are approximated by) discrete random activity-completion-
times. With the realizations and probabilities v
yE with Pr(Yy=yK)=p, (k) >0, S AR~ f Py (k) =1

k=1

Z'x+]

and, for computational convenience, with the choice of Y2 Ve

with p, (0)=p, (r ,+1)=0 according to

(18) DSyg<yi<y§<...<y§x<yx(=y§X+1=max{max{y§X},A}+1).

the reformulation of (17) gives the following large (dependent on
the number of realizations of the random variables) linear programs:

%
D) [px(k)[q;u;(ka+q;u§(k)]+c(dx)]+ ] eldy)=min,

xEX), k=1 *EXg
dx+“f1(x)'"f2(x) S0 r XEX ,
-Tg + ome S A
(19) + = k

dx+ux(k)-ux{k} =y ’ XEXy, k=1,...,rx,
—dy s - yg r XEX ,
dx = Yig 4 XEX ,

uf (k) ,uz(k) 2z o0 ¢ XEX , k=l,...,xy.

Instead of handling (19) a finite sequence of Fulkerson project
scheduling models (independent of the number of realizations of
the random variables) is solved. For the n=-th subproblem select
(20) sRefo,1,...,ry}, xE€X, (with sDzo, x€xg),
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denote
sB+1
X

yEX y o(sd) ¢ XEXps
(21) Qge= ' Bx= (R o

vg ¥Yx Ox  XEXar
with 0(s§)=q;-(q;+q;)Pr(Yxss§)+ox,
and consider

dex = max,

xXEX
dx"’“fl(x)"ﬂfz (x) = 0,
SUB (s}) -Tg My s X
—dx s "‘C!.xi
dy S Py
and its dual
Av+ ) [Byxgx-oghy] = min,
xEX
n =
DSUB (sy) Wy gy —hy = Yo v , iss + XEX,
Wy we={ 0 , ifs,t , i€V,
{x|£) (x)=1} = {x|£2 (x)=i} v, i=t
Wor Gy r hx z 0 i XEX;
v 2 0.

DSUB (s]}) has restrictions which remind of flow problems in networks,
SUB(sf}) has restrictions which coincide with those of SPPS except
for the random activity-completion-times where the variation of
dy-values is bounded by subsequent realizations yin, y§n+1.
Obviously, optimal solutions of SUB (s]}) are feasible for SPPS,
thus, the gquestion arises under which conditions optimal solutions
of SUB(sl}) are also optimal for SPPS.
A sufficient optimality condition is the following:

Let a¥, x€x, n}, i€V, be optimal for SUB (s})

agd w¥, g¥, h¥, xex, v¥* be optimal for DSUB(sD).
1

g¥ 5 (af+ax)py (sgtl)  ,  XEXp.
(22) h¥ < (af+ay)py (s]) ,  %EX, with s§>0,

then d%, xex, n¥, i€V, is optimal for SPPS.

If (22) fails to be satisfied new problems SUB(SQ*l), DSUB(52+1}
have to be selected which allow improvements. The selection in-
structions use properties of the out-of-kilter algorithm applied
to the following modified graph

(7,%,%F) with

V=v

X={x | xEXIUlxy | xEXTU{x 1,
~ o Ex) P z=xp , X&X, k=1,2 e
Bl gy g Bt p K y 2€X,
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because with

-Bx + z=xy , xEX
=4 A P Z=Xg 26X
—Oy Z=Xy XEX
and
Yx ¢ z=xy , x€X
1,= , ZEX
@ ; otherwise B
the following circulation problem in (V,X,£):
 CgW, = min,
zEX
n ~
CIRC(s}]) - , i€V,

Wop— W, =
(2| (2)=1) (z|E2(z)=i} =

Ogw,s1, v 26X,
is equivalent to DSUB(sD) .
A well-known solution procedure for CIRC(SQ) is the out-of-kilter
algorithm which consists of an initial phase, a labeling phase,
a circulation-alteration phase and a point value-alteration phase.
It is easy to check that having obtained optimal point values
Tf,iCG, and an optimal circulation w¥,zE€X (by application of the
out-of-kilter algorithm to CIRC (s))

* *
(23) wx=w:]+wxz, g§=yx-w§1, h;

- K %
_w§2’ XEX, v =Wx o+

is optimal for DSUB(s}),
(24) ni=-t¥, i€v, a¥=min{B,, “?2(x)‘“§1(x)}' XEX,
is optimal for SUB(sl).

Using CIRC(s]), (23), (24) the optimality-condition (22) can be

reformulated as
wzlayx—(q;+q;)px(s§+l) ¢ XEX,,

(25)

Wi (q§+q§)px(s§) ' XEX, with sl>o0.

If (25) failf to be satisfied,
x;={xexr|ogw§1<yx—(q;+q;)px(sg+1)},
x;={x6xr|w;2>(q;+q;)px(sgy, si>0},

X2= X \(xjuxz}
is a partition of X, from which one gets
sp+l ,  xex{,
sitl= sh-1 , xEX; (with sDtlzo, *EXq),
si ; XEXE,

and new problems SUB(si*l), Dsu(si+l), cIrc(sD*!) for which im-

provements are possible if a "modified" out-of-kilter algorithm is

used. It can be shown, see Cleef and Gaul [3]:

Let (af)™1, xex, (n})n+l, iev, (resp. (af)", xex, (nH)n, i€v)

be optimal for SUB (sh+l) (resp. SuB (sl)) obtained by subsequent
applications of the "modified" out-of-kilter algorithm.
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If during the appllcation of the "modified" out-of-kilter
algorithm to CIRC(S“* )
(a) a point value- alteration phase was performed then (d¥)n+l,
xEX, (ni)"+], iFV, gives a better solution of SPPS than
td*)n, x€x, (rh)n, i€v,
(b) no point value- alteration phase was performed then (d;)n, XEX,
(ﬂi)n. i€v, is optimal for SPPS.
To ensure finiteness a restriction to rational data for the de-
scription of SPPS has to be made.

4. EXAMPLE

The dimension of the following example indicates that the suggested
approach can handle problems of application- -relevant size. For the
project-digraph of Fig. 1 the random activity-completion-times are
assumed to have five realizations which together with its associ-
ated probabilities and the crash completlon -times y3, the cost-
terms by, o,, the compensation cost-terms qx, qy are g;ven in

Tab. 1. Taklng into consideration a pro;ect—completion~t;me
constraint A=40 the optimal solution dx was optained in seven
iterations starting with s@ =0, xEX. For the computation about 15
seconds CPU-time on UNIVAC 1108 were needed. For other examples
see Cleef and Gaul |3] or Gaul [11].
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