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A complete graph has randomly failing nodes and edges. All failures are independent,
and there is a common node reliability and a common edge reliability. Generalizing an
approach developed by Gilbert for reliable nodes and unreliable edges, we find for-
mulas for various kinds of connectedness probabilities. Bounds and approximations to
the probabilities are given.

l. INTRODUCTION

A simple model for a system of unreliable components is given by a stochastic graph
G having N nodes and R random edges which correspond to the components of the
system. The edges corresponding to functioning components are realized. Compo-
nents are independently functioning with probability @. This model was used by
Moore and Shannon [7] in their pioneering work and has since then been used exten-
sively in the literature; references may be found, for instance, in Barlow and Proschan
[1, 2], Wilkov [11], and Tainiter [9].

Two measures of system reliability which are commonly used are the probability
Py that the stochastic graph G is connected and the probability Qy that two specified
nodes are connected in G. The probability Py is equal to

R
Py =3 Ayxa®(1- ok, (1)
k=0

where Ay , is the number of connected realizations of G having exactly k edges.
Another formula for Py is given by

R
Py=1-3 Byga®(1-a)f*, (2)
k=0
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where By ; is the number of disconnected realizations of G having exactly k edges.
Neither of formulas (1) and (2) is convenient for numerical calculations for large XV,
and many algorithms have been proposed for determining P, and Qy; see for instance
Shogan [8] for some references to various algorithms based on enumeration of realiza-
tions, paths, or cutsets of G,

For complete graphs with random edges there is another approach available. Gilbert
[6] proved the recursive formula

Py=1-3 (’,‘,' Z }) Py(1 - a)*@-H @)
=

by which Py can be successively determined for N = 2, 3, ..., using the initial value
P, =1, In order to determine Qp, Gilbert used the relationship

N1 IN-2 g

Ov=1- 3 (k_l)ml-a)"‘”"’ @)
1

forN=2,3,.... Usinga generating series for 4 N,k Gilbert obtained a generating

series for Py and a combinatorial expression giving Py as a sum extended over all
partitions of NV:

Py= Z((—l)"‘(x- DIN (1 1= ﬁ ("!)x"Kn!)! )

n=1

where K, is the number of n-parts and

N N N fn
K=Y K, N=3 nK, R=3 (2)1{,,. ©
n=1 n=1 n=1

By using (6) it follows that the exponent (12\/ ) = R in (5) is equal to the expression
3(V? - Zn’K,) which was used by Gilber{ The number of terms in (5) increases
rapidly with N, and Py is more easily computed by means of the recurrence rela-
tion (3).

The appropriateness of a model in which both nodes and edges are random has been
discussed by Van Slyke, Frank, and Kershenbaum [10]. We shall introduce such a
model and generalize Gilbert’s approach in order to find various connectedness prob-
abilities. In Section II we give the necessary definitions and notation, and in Section
IIl we prove formulas for four different connectedness probabilities. Section IV gives
some bounds and approximations to the probabilities,

Il. A STOCHASTIC GRAPH MODEL

Consider a complete graph of order N and size (’X‘z in which the nodes and edges may
be subject to failure. We shall say that a node or e ge is up if it does not fail. Assume
that nodes and edges are up independently of each other with probabilities f and «,
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respectively. Let G be the subgraph consisting of the edges which are up and all the ¥V
nodes. Let H be the subgraph of G induced by the nodes which are up. Then H con-
sists of the nodes which are up and the edges which are up and not incident to any
failing node. If we introduce indicator variables

- {l if node i is up, o
P15 0” otherwise,
{l if the edge between nodes i and j is up, ®
7 1o otherwise,

fori,j=1,...,N, then G and H can be given by the adjacency matrices with elements
xy and z; = x;; ¥, y;, respectively. Here X;; = x;; and by definition x;; = 0. The V indi-
cators y; and the (g ) indicators x;; for i < are independent Bernoulli variables with
expectations f§ and a, respectively.

Stochastic graph models of this kind have also been investigated in statistical analysis
of social networks. In this case G is an unknown graph and H is an observed subgraph
induced by a random sample of nodes. The above model applies if the unknown graph
is assumed to have a prior distribution given by independent edge occurrences with a
common probability a and the nodes are Bernoulli sampled with selection prob-
ability f. See Frank [3] for further details and references.

The order of G is NV, and the size of G is given by

R= XD %y ©)

i<f
and is binomially distributed with parameters (]g )and @. The order of H is given by

n= Z Yi (10)

and is binomially distributed with parameters V and B. The size of H is given by

= ZZx,-,y,y!. (ll)
i<f
The expected value of 7 is equal to
Er= ({X) ap?. (12)

By applying a moment formula given in [4] or by using results from [5], the variance
of r is found to be

Varr= (‘g)uﬁ’(l - af?)+ 6(];,) a®f*(1- p). (13)
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The sizes and orders of G and H provide some crude reliability information since, for
instance, r < n - 1 implies that H cannot be connected, and r > (” 2 1) implies that
H is connected.

Other reliability measures are provided by the probability Py that G is connected,
the probability Qy that two specified nodes are connected in G, the probability
Ry that H is connected, and the probability Sy that two specified nodes are
connected in H. These probabilities are investigated in the next section.

I1l. CONNECTEDNESS PROBABILITIES

Consider first the probability Py that G is connected, given by Gilbert’s formula.
This recurrence relation (3) can be given as

5 (’}’, i) Pp(1- )™ =1, (14)

k=1

and this relation is proved by noting that the kth term is the probability that a fixed
node is contained in a connected component of order k in G. Another recurrence
relation for Py can be obtained by considering the event that a fixed node is contained
in a connected component of order k in A. This event has probability

(”,‘: . }) B Py [1- +B(1- ) 1" )

since the fixed node and k - 1 other nodes should be up and connected, and each of
the remaining N - k nodes should be either failing or up and not incident to any node
in the connected component. The union of these events for k =1,...,N is the event
that the fixed node is up, and it follows that

)!_1. (ﬁ;i: 11) BPy [1- B+B(1 - 0)* 1V =B. (16)

k=1

It is also possible to prove (16) algebraically by using a binomial expansion of each
term, changing the order of summation, and applying (14) to the inner sum.
The probability Oy that two fixed nodes are connected in G is equal to

o :i (1:: i) Pl - @)Y, a7
=2

where the kth term is the probability that the two fixed nodes are contained in a
connected component of order k in G. Gilbert’s relation (4) can be obtained from
(14) and (17) by using the identity

-G e
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The probability R that H is connected is equal to
N (N 12
Ry=2 (k) B Pe(1- BV, (19)
k=0

where the kth term is the probability that H has order k and is connected. If P, is
defined as 1, then an empty graph H is vacuously connected, and if P, is defined as 0,
then an empty graph H is vacuously disconnected.

The probability Sy that two fixed nodes are connected in 4 is equal to

Sy = Py [1 - 1- . 20
N E:(k—z)ﬂ x[1-B+8(1-a)"] (20)

where the kth term is the probability that the two fixed nodes are contained in a
connected component of order &k in H. Another expression for Sy, is

N IN-2 =
SN=2 (,c_z) B or(1- BV, @n

where the kth term is the probability that A has order k and that the two fixed
nodes are connected in the subgraph of G induced by the nodes in H. It is also
possible to prove (21) algebraically from (17) and (20).

IV. BOUNDS AND APPROXIMATIONS

We shall start by deriving bounds on Py using the same technique as Gilbert. A
slight modification of his lower bound on P will be obtained.

An upper bound on Py is provided by the probability that no node is isolated in G.
If A; denotes the event that node i is isolated in G, then

PN<1-P(C| A,). (22)
i=1
By using the general inequality
N
P(0 4)>£ Pud- T3 rainay @3)
i=1 i=1 i<j

and the equations

PA)=0-a)",  PA;NA)=(1-0a)" (24)

for i <j, it follows that

Py<1-N(1-a) '+ (j;’) 1-a)3, (25)
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A lower bound on Py can be obtained from (3) by bounding Py with 1 for k<N.
This yields

PN>1—NZ—I (k: }) (- )R
k=1

=1 %’:g: (’:) (1 - Q)R @26)
Since

1 1

; i[N‘f‘k(N" 2)], l<k<]‘N,
k%) {-;-[N-i-(N-k)(N- 2)], AN<Kk<N-1, @7

it follows that

(1-a FIN-K) & (1 - a)le(N-z)lI: +(1- a)IN*(N-k)(N-mlz (28)
for 1 <k <N - 1, and if (28) is used in (26) we obtain, after simplification,

Py = Nz-l (}:) (1 - o) N+kN-DI/2
k=1

= 1- (- {1+ - VIV - 1- (- V) (29)
From (25) and (29) it follows that
Py=1-N(1-a)"'+0N*(1- ) el (30)

An upper bound on Qy is provided by the probability that neither of the two
specified nodes is isolated in G. This yields

On<1-2(1-a)¥ ' +(1-a*> (31)

A lower bound on Qp can be obtained from (4) by bounding Py with 1 for k<N
and using (28); this gives

on>1-201-a)¥'[1+(1- a)V-2N2N=2, (32)
From (31) and (32) it follows that
oy=1-201- ¥ +ONA -] (33)
Since Py is bounded, we obtain from (30) that

Py=1-N(1- o)V +N?(1- a)*"’My, (34)
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where My is bounded for all N, say My < M. By application of (34) to each term in
(19) and by using the well-known identity

3k (1;) a*bN* = Na(a + b)Y (35)
k=0
we find that

Ry = )1_!. (jr) B (1 - N[ - k(1 - )* +E2(1 - 0)** M, ]

k=0
e N
=1-NB(1- )" + 3 My, (36)
k=0
where
N : &
ewe =k () 1801 - apPe1% - Y &)
Now Cnk 2 0and
N N
> enkMx|SM Y cnk, (38)
k=0 k=0
ie.,
N N
Z CNkMk =0 (Z CN];) . (39)
k=0 k=0
By using the identities (35) and
y N\ kyN-k _ 2 N-2
Y k- 1)\, bV * =NW - 1)a* (@ +b) (40)
k=0
we find that

5 e =N - 1)[B(1 - @12 [6(1 - /% +1- V-2
k=0
+NB(1 - )2 [B(1 - @)*/? +1- 1V @1)
It follows from (36), (39), and (41) that

Ry =1-NB(1 - )V ' + oY), (42)
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y=1-B[1-(1-a)*?]. (43)

Since ¥ < 1 - aff we see that the approximation

Ry=~1-Np(1- o)™ (44)

holds in the sense

Ry=1-NB(1-af)¥ ' [1+0(1)]. (45)

A similar investigation of Sp starts from (33) and (21) and leads to

Sy =82 - 28%(1 - a)(1 - af)V% + O(VAY), (46)

where v is given by (43). In particular, we see that the approximation

Sy=~p*[1-2(1-a)(1-ap)N?] 47

holds in the sense

Sy =B% - 282(1 - a)(1 - af)V2[1 +0(1)]. (48)
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