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Bounding Distributions For Random
Project-Completion-Times

Abstract

If the activity-completion-times of a project digraph are random variables
the computation of the distribution of the project-completion-time can be
difficult. This paper describes possibilities for obtaining lower and upper
bounding distributions for the distribution of the project-completion-time.
Some approaches, known from the literature, are included as special cases.

Introduction

Graphtheoretical tools have proved to be useful for different areas of
applications, see Henn (1968a), (1968b), (1969) for their use in describing
and analyzing economic problems, and are adopted here for the coordination
and supervision of projects. In this paper a project is given by a set of
activities, a binary relation on this set of activities the transitive closure of
which is a strict order (irreflexive, asymmetric, transitive) and random
activity-completion-times.

The set of activities corresponds with the arc set (at least after the use
of dummy arcs) of the following stochastic project digraph

D=V, X, £, Yy)

which is a finite, directed, simple, acyclic, weakly connected graph where
V={1,...,m} denotes the set of points, X the set of arcs, f=(f', %),
fi: X =V, i=1, 2, the incidence mapping (with f'(x), f*(x) as starting-,
end-point of x) of the graph. The points are numbered in such a way that
x € X = f1(x) <f%(x). Additionally, 1, m eV represent the single points,
called source, sink, with {x|f2(x)=1, xe X} =0, {x|f'(x)=m, x e X} =0.

Different from Henn (1968a) the activities correspond with the arcs and
the restrictions between the activities are described by the arc-adjacency
relation of the chosen project digraph.
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Yx=(Y,|x €X) is a random vector defined on a given probability space
(€2, o, P) the components of which describe the non-negative activity-com-
pletion-times (with degenerate distributions in the non-stochastic case, e.g.
for dummies).

If the activity-completion-times are random variables, the project-
completion-time (which is yielded by maximizing over the sums of the
completion-times of those activities forming source-sink paths) is a random
variable the distribution of which is difficult to obtain. Different attempts
to describe the situation are known, see e.g. Charnes, Cooper and Thompson
(1964) for a first approach using tools from chance-constrained stochastic
programming, Cleef and Gaul (1981) for a two-stage stochastic programming
model, van Slyke (1963) for one of the first applications of Monte-Carlo
methods. Of course, efforts habe been made to determine bounds for the
expected project-completion-time, see e.g. Fulkerson (1962) for one of the
first approaches besides the well-known PERT-lower bound, Gaul (1981a),
(1981b) for more recent results, and bounding distributions for the distribu-
tion of the project-completion-time, see e.g. Kleindorfer (1971), Shogan
(1977). Using appropriate decompositions of the underlying stochastic pro-
ject digraphs in stochastic subproject digraphs which generalize results ob-
tained in Gaul (1978) this paper describes possibilities for the determination
of different bounding distributions including the Kleindorfer- and Shogan-
bounding distributions as special cases.

Formulation of the problem
For abbreviation, sometimes only D is written for a digraph in which case
V(D) resp. X(D) is used to denote its point resp. arc set. The incidence
mapping and the random vector are mostly omitted when, more detailed,
(V(D), X(D)) is written instead of D.

For digraphs D'. D? the following notation is used:

D' ¢ D? (subdigraph) iff V(D') ¢ V(D?), X(D') ¢ X(D?),

D! ¥ D? (union-, intersectiondigraph) iff V(D' ~D)=V(D") ¥ V(DY

DlUDz — DY VY X(D?).
D, cD,, X(D' R D%)=X(D') R X(D?
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is called stochastic subproject digraph (s.s.d.) if D;; is a stochastic project
digraph with source i, sink j and V(Dy;) C {i,i+1,...,1—1,]}

X(Dy ¢ f! ((V(Dy) x V(D;)) n f(X)).
The incidence mapping f/X(D;;) and the random vector
YX(D.J)= (Yix e X(Du))
are mostly omitted. If for i, j € V a s.s.d. Dy exists D;; denotes the maximal
one (notice D,,,=D,,.).
A path P;; with
V(Pij) =10y inlil =i, in=j}’
X(Py) ={xy,. ..o Xq—1 [ F(x) = (s 1441), =1,. .., n—1}
is a special s.s.d.. (Py), resp. (P;)%, ke V(Py), gives the subpath of P;
from i to k resp. k to j. Instead of Dy the arc notation x is used.
Now, one can define the D;-completion-time L(D;)) : R — R, with

(1) LDy (Yy=max ¥ proj(Yy)

PiyeDiy yex(p)

and its distribution
(2) Fp,()=P(L(Dy=t), teR
(with L(D,,)=0, L(D,,,) the project-completion-time).
The computation of F,_ is difficult, but a sequential determination of
bounding distributions Fy, , F§ for appropriate s.s.d. D,.. veV, with
Fg, (=Fp5 (=F§ (), teR,

is possible. Increasing v up to m yields bounding distributions for the
project-completion-time.

Systems of stochastic subproject digraphs

Consider stochastic subproject digraph systems (s.s.d.s.) of the form

8,={D,|D,, is ssd.,i<v}, VeV, v>1.
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With B(3,)={ilieV, D, €d,} call 8, an appropriate s.s.d.s. if
(3 VD, Di,e8,:D}, ¢ D,
4 VP, cD,,3i,eB@d,) nV(P,,), D, €8,: Py, =(Py,);, L (Py,)

with (Py,);, N 8, C (B(3,), §), (P,) C D,,.
Appropriate s.s.d.s. always exist, e.g. 8! =D,,, 82= {x|x e X, f*(x) = v} are
appropriate, and generalize proper s.s.d.s., described in Gaul (1978), (1981a).

Among the properties for appropriate s.s.d.s. one immediately recognizes ‘

Lemma 1:

If 3,={D,,} is an appropriate s.s.d.s. then

(@) 8)>8,08

(b) jeVD\{i} =D;, cD,,

(© jeV(D}, nDENWi} N (i) = Dy, ¢ D}, N DZ,,

(d) VP CDlmﬁ eV(3,) 3, eB(,) N V(Pyj), D, €8,: Pyj=(Py));, U (P )
with  (Pyj),, " 8, C (B(3,), 9). (P,j) C Dy,

) Py Dy xeXP)Af2(x) € V(8)\B(3,) = ID,, €5,
with xeX(D,,),

() Py C Dy, xeX(Py) Af' (x) € V(8,)\B(8,) = either 3D, , € 5,
with xeX(D,,) or (P)"™ n s, =({f'(x)},9).

Proof:

(a) Use arguments as described in Gaul (1978), lemma 2.

(b) jeV(D\i} = 3P; CD,,
D, ¢ D,y = 3p, ke V(D, N wh B<x, and P, CD,
with P, A Dyy=({u x}, ).

Using the existing paths Py; (with Py; n 8, C (B(8,), 9)), P, C D,,, Py, €Dy,
P,. C D,,, P, C D,, allows to construct

&
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P, =P WP UP,UP UP,
contradicting (4).
(c) Obvious from (3), (4) and Lemma 1 (b).

(d) Obvious for j=v and jeB(3,). For jeV(8,)\(B(3,) U {v}) choose
P, C D,,, see lemma 1 (b), (c), and P;,=Py; U P;,. Using (4) one gets

Pi,=(P,), Y (Plv)iu and j¢V ((Pl u)ig)- thus (Pu)io =(P, vio
with (Py;);,, nd, C (B(3,), ¢)1 (Plj)iu.: (P, v)in)j C Dy,
(e), () Use arguments as described in Gaul (1978), theorem 1. O

A choice from different appropriate s.s.d.s. will be necessary in the fol-
lowing. One gets

Theorem 1:

If §,={D,,}, 8,={D},} are two appropriate s.s.d.s. with X(3,) >X(8;) then
there exists an appropriate s.s.d.s. 8, = {Dg,} with

(a) X(8))=X(3,),
(b) VDj,ed,3D}ed,:Dj, c Dy,

Proof:
If 8, satisfies (b) nothing remains to be shown, otherwise there exists
D, €&, with D, ¢ D, for all D,, € §,. Choose D}, €8, with j,eV(D},)

Jov

then i, <jo = D}, C Dy, C D},, from lemma 1 (b), a contradiction, thus
i; =jo=1i*. Consequently, there exist

P, C D}, i*<p, with P., nDi,=({i* p}, ¢ and therefore
D?,e8, with i*eV(D,) and Df, nDi,2({i* v} 0,

and, again, i, =j,=1i*. Now,
82 =(8,\{DL,, D3,}) uD}, with D#,=D}, uDj,

is an appropriate s.5.d.s. satisfying (a) but with a reduced number of s.s.d..

If (b) is not yet satisfied the just described procedure can be repeated. [J

The notation 8, C @ & is used for appropriate s.s.d.s. &, 8/ fullfilling the
conditions of theorem 1.



174 Wolfgang Gaul

Bounding distributions
The usefulness of the s.s.d.s.-approach is based on the following

Theorem 2:
If 8,={D,,} is an appropriate s.s.d.s. then
L(D,,) =II,?3;§ {L(D;) +L(D,)}.

Proof:

Use arguments as described in Gaul (1981a), theorem 1. O
This theorem allows a sequential determination of the D, -completion-

time and of lower, upper bounding distributions of Fp,, by first determining

D, -completion-times and lower, upper bounding distributions of F5,,
i € B(3,), for appropriate s.s.d.s. §,= {D,,}.

For the stochastic dependence-structure of Yy association is assumed, see
Esary, Proschan and Walkup (1967) which has its main application in
reliability theory, see Barlow and Proschan (1978). Additionally, independ-
ence for Yy, =(Y,|xeX)), i=1,..., k, for appropriate choosen partitions
Xys. .0, X, of X is needed.

Call Yy, or its set of components {Y,|x € X}, associated if

cov (g, (Yx), 82(Yx)) 20

for all non-decreasing functions g,, g,: R*l — R for which E (2 (Y20),
E(Ez(Yx)), E(g, (Yy) Ez(Yx)) exist,

Needed properties of association are
(A1) Independent random variables are associated.
(A2) Any subset of associated random variables is associated.

(A3) The union of independent sets of associated random variables is asso-
ciated.

(A4) Non-decreasing functions of associated random variables are associ-
ated.

(AS5) If Yy is associated then
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k
P(Yx=yx) 2] P(Y,=Y,, x€X))
i=1

k
P(Yx2yx) = 1 P(Y,2y,, x€X))
i=1

k
where X, CX, i=1,...,k, with | X;=X (and X,,...,X; not

necessarily a partition). ian

Now, assume

(5) Y

X

x € X, have finite support
and use, with respect to an appropriate s.s.d.s. 8, = {D, }, the abbreviations

P(Yxw.) =P (Yxe,) =Yxen)s Yxen= (Y% € X(3,)),
[8\-]} = {Dileiv € 5\,--. i =J}’

then for
©) Fb, ()= T plyxe) max{0, X Fy, (t—max {LDy) (Yxe})
¥Xid,) B(6.) vit
—|B(8,)|+1},
7 Flﬁ:v(t)= 2 plyxen 11 Flsu(t-—max {L(D;) (Yxe,s)})s
¥YXidy) B(5,) [8u1i

(®) F5, 0= X pyxe,) g}iﬁ{ﬁ"ﬁ“(t—rgalf {L(D,) (yx@w )}

¥Xia,)

where F5 . F% are given bounding distributions with
9) F%,,(t)—é F5,(0=F§ (1), teR, ieB(3,),
one can show
Theorem 3 :
If §,={D,,} is an appropriate s.5.d.s., Yx(,, Yxg; are independent then
(a) Fp, . F§, are bounding distributions with
Fp, )=Fp (O=F§ (), teR,
(b) Fp, (1) is bounding distribution with

F5 (0SFS (0=F5, (0, teR,
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if, additionally, the random vectors Yy ), Yi@, are associated.

Proof:
Obviously, from the independence assumption
(10) F5, ()= X p(yxe, P( ﬂ {L(D“)S t-m {L(Dy) (¥x@» 1))

¥x(a,)

and from the well-known Fréchet-bounds and (9)
F5, 0= ¥ p(yxe,) min {F5, (t— max {L(Dy) (Yxe NN = Fn,,(t)

¥Xia,) B(sv)
Fp,.(0 2”‘2 p(¥x,) max {0, Z an(t - {L(Dy) (yxe,:)})

—[B(3,)|+1) 2F5,_(0).

Moreover, as Fy, , F§ are distributions and the properties of distributions
are maintained under the summation- and minimum-operation with
toieB(3,), F5,_and F§ _are distributions. If, additionally, Yxs,. Yy
associated one concludes:

Yy is associated because of (A3).
As L(Dy)) is non-decreasing for arbitrary s.s.d. D;; one gets

F5.02 ¥ p(¥xe.n) H Fp, (t— oy {L(Dy) (Yxe. )} 2 FE,, (O

¥YXi8,)

because of (A2), (A4), (A5) and (9), (10). For the same reasons as mentioned
above F§ describes a distribution function.

To show that Fj improves Fj _notice that

(11) ae[0,1], i=1,. raﬂu,ZEa, —r+1

(An easy induction argument shows that if (11) is valid for r=n it follows
for r=n+1

n+l
(1~H al) (1-e,)20= l’I aizl'l O+ 0psg — 1

n
i=
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n+l
=Y o—(n+1)+1.)

from which one gets i=1
F5,, (=% p(yxe.) H 2 (t—rga.:( {L(Dy) (yx@a 1)

¥xis,)

2 ¥ p(yxe.,) max {0, 2 F" (t—mﬂ{L(Div) (Y )})

¥xXia,,)
—|B@,)|+1}=F5, (1. a
Notice, that for theorem 3 the knowledge of bounding distributions F~
f—'g“ ieB(d,), is presupposed. Here, a sequential determination of the

bounding distributions is possible if bounding distributions

L
Dyjy’

F%um‘ j(i) € B(8,), for appropriate s.s.d.s. 8;, i € B(3,),

are known or can be computed and the needed stochastic dependence as-
sumptions are fulfilled.

Sufficient conditions, known from the literature, are
independence for Yy2,. . ., Yx@z) and
association for the single random vectors Yx2, VE{2,...,m},

together with the starting distributions

;=20
P:)“(t)= F‘é“(t)={é t=

otherwise.

For the special case 8, =867 (6), (7), (8) describe the bounding distributions
.of Shogan (1977). The bounding distributions of Kleindorfer ( 1971) are not
explicitly presented because, although they were developped under the
stronger assumtion of independence for Y,, x € X, see also (A1), the bound-
ing distributions (7), (8) are tighter.

Of course, the question arises how the bounding distributions are influenced
by the special choice of an appropriate s.s.d.s. .

In the special case when &,= (D]}, 6y ={D;,} are proper s.s.d.s. with
8, C € &, and X* is choosen in such a way that

(12) X(8;) u X*=X(8]), X(8)) nX*=¢,
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using the abbreviations

n
FD: ? Dy

P(yxe) =P(Yx: = yx4),

Fg ., F5., %" to indicate the underlying s.s.d.s.,

P(Ye)) =P(Yxop=Yah Yar=(slx € X(Dy)
for qeP(D},). Djed) jeP(Dy) nB()

one can show

Thearem 4:

If 5""{Djv} 8”—{D } are Propﬁr 8.5 deo Wlt-h 8' C5v, quu” Yx
Y are mdependent where X* is choosen according to (12) then

(@ F§ (OSFE (0, teR,
if additionally
Fu

Yaj

D.J(t) =3 p(yy) F‘ém(t = L'(ﬁ;u) (Yajs ))

for qeP(Dy), Die8l jeP(Dl)nB(E).

(b) Fg (O2F5 (0, teR,
if additionally

F5 (0= Zp(s) F5,, (t—=L(Dg) (Vgs:)

for qeP(Dg,), Dy, edl, jeP(Dg)nB(3)),

and the random vectors Yy, Yo, Yy are associated.

The rather techmcal proof is omitted.

The question whether a similar statement is true for appropriate s.s.d.s

is under consideration.
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