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Abstract

Usually, in realistic transport situations different transportation
systems are available which form a compound transportation system.

Thus, the problem of finding an optimal route from one node of the
compound transportation system to another involves not only costs
(time) of using the actually chosen transportation system but also
costs (time) of changing between different transportation systems.

An efficient solution procedure for an optimal (cheapest, shortest)

route in a compound transportation system - which, now, can contain
cycles - is presented and demonstrated by means of an example.

1. Introduction

Starting point of the following considerations is the possibility of
describing multicommodity flow problems by ‘huge' linear programs
where 'huge' refers to the number of columns of the restriction matrix
of the problem. These columns correspond to the possible routes
between pairs of sources and sinks of different flows (see e.g. Ford
and Fulkerson [10] or Gaul [12]) the determination of which would
cause an enormous effort prior to the actual solution of the problem.
Thus, e.g. for interchanging these columns within the rules of the
revised simplex method a special procedure for obtaining the momen-
tarily desired source-sink multicommodity flow routes is needed.

0f course, algorithms for optimal routes in networks enjoy an ever-
lasting interest (see e.g. Dantzig [4], Dijkstra [6] as early referen-
ces, Dreyfuss [9) for one of the first excellent appraisals of short-
est route algorithms, Dial, Glover, Karney and Klingman [5] for a
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paper emphasizing the computer implementation viewpoint, Domschke [7],
[8] for applications in the logistics area, Gaul [11] for one of the
attempts to consider additional constraints within route problems).

In this paper it is assumed that in realistic transport situations
different transportation systems are available which form a compound
transportation system and - on the basis of these assumptions - an
optimal route algorithm is developed which pays attention to the
possibilities of changing between different transportation systems.
Now, not only costs (time) of using the actually chosen transportation
system but also costs (time) of changing from one transportation
system to another must be considered. Additional sources of costs
(time) components can be incorporated, as mentioned within the multi-
commodity flow problem framework described in the next section, allow=
ing different degrees of complexity for handling such transportation
situations (see e.g. Beckmann [1], [2], [3 ] for the discussion of lots
of problems in the field of traffic flow).

Having formulated the compound transportation systems approach in
section 2 in section 3 an optimal route algorithm is presented to
overcome the exchange problem with respect to the possible use of
different transportation systems. In section 4 an example of simplest
form is handled for illustration.

2. Compound Transportation Systems

If the structure of the i-th special transportatlcn system is de-
scribed by a finite s;mple directed graph ¢t = {N ,A J° | where Nt
denotes the set of nodes, A the set of arcs and gt:a® » N x N x (i)
(a*+~ (37 [a ) J (a*); i) with J (a* )and JZ(a ) as start and end nodes
of arc a”) the 1nc1dence mapplng of G-, i=1, .-.,1I, then the flnlte

directed graph G = (N,A,J) with node set N =\5 N!, arc set A -'\j Al
i=1 . i=1
and incidence mapping J:A + N x N x I with Jj(a) = J;(a), ac A ’

j=1,2, represents a compound transportation system (see Fig.2(e) for

an example of a graph composed by the graphs of Fig.2(a), (b}, (c),(d)})).
Generally, G is no longer simple, i.e. parallel arcs will exist which,
however, can be dist;ngpished by the already introduced notation
(nl,nzgi) for an arc alEAl from node n, to node n,.
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Now, a route from node n, to node n,  ,can be described by the sequence
i - .q i = s 1 i ™~ . q
of arcs a1 (= (nl,nz.lljl, a 21 (nz,n3,12)),...,a ki( (nk,nk+l,1k))

traversed in the given order. If n, is equal to np the route is
called a cycle., If each node (arc) of the route is used only once the
route is called cycle-free (simple). Standard optimal route algorithms
search for cycle-free optimal routes but in this context the larger
set of all simple routes has to be taken into consideration (see Fig.l
where for each route from node 1 to node 3 one has to change transpor-
tation systems but changing in node 2 (a main junction) can be less
convenient than changing in node 5 (a state-subsidized fringe area).
see also Fig. 3 (a) and the remarks given there).

state-subsidized
fringe area

main junction

Fig. 1: Transportation System 1 (---), Transportation System 2 (—»)

Amulti-commodity flow problem in a compound transportation system can
be described as follows:

For m= 1,...,M let ,n_EN, n, # ﬁ%, be the source and sink of

n
m''m
flow of commodity m - flow m (for abbreviation)-.

Let ro be the 1l-th route from n_ to ﬁm and Al(r its arc set,

5l m,1’
1=1,...,1(m). If £ is the flow value of flow m along route r
m,l m,l

then

f = fm with fm = fm,l

is called M-commodity flow (in route representation).

Of course, additional restrictions, costs viewpoints, etc., will be of
interest, e.g.:
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If
G : A > IR, denotes capacity on arcs,
ce : B - IR, denotes capacity of changing for suited arc pairs of
B =((a'1,a%2)9,(a"1) = 3, (a%2), changing from G'1 to G'2 is
possiblel,
d : {(1,...;B} = 1R+ denotes stockpile of resources for transpor-
tation on arcs,
dd : {l,...,HH}» IR denotes stockpile of resources for changing
between different transportation systems,
if
z" A o IR, denotes unit costs of transportation for flow m on
arcs
zz" : B a—:m+ denotes unit costs of changing between different
transportation systems for flow m,
ik : A R, denotes unit costs of transportation-resource h,
h=1,...,H, for flow m on arcs,
zzmh: B + IR, denotes unit costs of changing-resource h,

h=1,...,HH, between different transportation
systems for flow m,
then, with the matrices
1, a€A(r )
) with w = , pd

W=
m,1 0, otherwise
(rows = arcs, columns = routes),

w
a,r

T P
1, a~1,a72 LA(rm'l)

m,l

W = (ww_i ) with

b ww_1i,_1
1a 2'rml a~la“2.k 0, otherwise

(rows = arc pairs of B, columns = routes),

with r: a as consumption of resource h for trans-
’
portation of flow m on arc a
(rows = resources, columns = arcs)
RR™ = (rrm i, i) with rr i, i as consumption of resource h
h,a"1la"2 h,a"la"2

for changing between different transportation
systems

(rows =~ resources, columns = arc pairs of B)

one can formulate restrictions of the kind
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7w
) £ sc (1)
mél o
M
LA < ce (2)
m=1
M
yRW" £ sd (3)
m=1
M
] RR™wW" £ = dd (4)
m=1
and it is easy to check that
H
h
zlr, ) = | w (2™ + § 2™
m,Ll aEA a,rm'1 a p4q h,a "a (5)

HH

p . m. : m . i mh . s

" allalz,rrn 1 Izzallal2+hzlrrh,alla"2 4% allalz]
r

(a*1,a*2)€B
gives the unit costs of transportation for flow m along route r, -
r

If
g:[l,...,M} - IR+ denotes minimum requirements for the M-commodi-
ty flow at sinks ﬁm, m=1, cee M

restrictions of the kind
(1,...,1]fm z gy ’ m=1,....:M; (6)

can be added which do not alter the costs expression (5).

M
min{ J

(vo.rzlx l],...)f | Restrictions of the kind
el m, m

(7)
(1),(2),(3),(4),(6) have to be satisfied.]

describes one of the possible linear programming approaches for such a

multicommodity flow in a compound transportation system situation.
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The explicit presentation of such restrictions, costs viewpoints,
etc., is just to show how such conditions can be handled by corre-
sponding linear programs. However, for recording a linear program of
the form as given in (7) all simple routes r. ., must be determined in
advance, an enormous effort prior to the actual solution of the prob-

lem.
With simplex multipliers 7€ IR'AJ AE :I.RIBI , ME mH, vE IR HH, cemr M
assigned to the restrictions (1), (2), (3), (4), (86)
! ]f Ay ]
z(r )= ) W [n_+ )} ¢ U
m,1l a€a a,rm’l a h,a" h
(8)
HH
- ) ww_ i, i [Agiqadot § £Tp _dq.i,v iy d5]-0p < 0
I ala 2,rm 1 "a la™2 h,a"la"2"a"1la"2 m
(a*1,a*2)€B ’ h=1

should be valid for a route Tm, 1 to be a candidate for an interchange
of columns within the rules of the revised simplex method applied to
problem (7). From (5) and (8) it follows that values for arc pairs

. H
i N, . Lg—" m mh, _
via®l,a"2) = z 1 “all+h£1rh,all[z at1™hp |

(9)
HH

- mh,
+ zzgig ity d 21}1 rry igg ip022 gl iy~ Vaiyals)

can be defined and an optimal route procedure which labels arcs (in-
stead of nodes as performed by standard route algorithms) can be de-
veloped as described in the next section. If

min { i . v(ail,aiZ)} 2 gy M= Ti00a,M
1=1,...,1(m) (a*1,a*2)€A(x ,)

optimality in problem (7) is reached. Otherwise M optimal routes in
the compound transportation system have to be determined.

For simplicity, the use of resource restrictions is omitted in the
following but it should now be clear how additional restrictions can
be included in the problem formulation.
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3. Optimal Route Procedure

For the problem of finding an optimal route from node n; to node n, in
a compound transportation system a restriction is made to the main as-
pects 'transportation on arcs' and 'changing between different trans-
portation systems' (see (1), (2) and (5) when summation with respect
to h is omitted). Also, the further description does not depend on the
choice of a special flow m, thus, z, (zzailaiz) denotes unia costs of
transportation on arc a (unit costs of changing from arc a 1 to arc
aiZJ. For computational convenience two additional arcs

aSTART START) aSTOP STOP]

with Jz(a with Jl(a

ll'
are introduced where zaSTART (zaSTOP) can be interpreted as ware-
housing expenses in node n, (node n2) and zaSTARTa with Jlta) = ny
(zaasTOP with J2(a) = n2) as loading (unloading) charges. Notice, that
the set B (see the explanations of additional restrictions subsequent

to the definition of an M-commodity flow) has to be augmented analo-

gously.
Procedure:
STEP 0:
1, = {aSTART}
l(aSTART) (VaSTARTrQJ with VaSTART = zaSTART
A = lalaca,dy(a) = JztaSTART) }
s =1
STEP s:
A=@g *STOP (NO SOLUTION)
min [Vall+zzalla12+zalz}

(at1,a'2)eL x A N B
= ik * 4 * Pk = Pk
V,oiy +zz g% 1% 42,1, Vi,
i _*
(As the minimum is not necessarily unigue: p(at2’) is
i _*
used to denote the set of predecessor arcs of a*2 with
i * i *
a1 ep(a‘2).)
3 _ %
L=1Lu (a*2)

Lai2") = (v i,*2(a'2"))
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i *
ais* = 2STOP , epop  (OPTIMAL SOLUTION)

-
1l

((a\(a2")) U (alaea, 3 (a) = T,(at2 ) NL

s =8 + 1 +* GO TO STEP s.

Here, L denotes the set of labeled arcs, the vector 1l(a) contains the
START

costs Vaof an optimal route from a to a and the set of predeces-
sor arcs P(a). The procedure stops if either n% and n, are not con-
nected or the final arc aSTOP is reached. If a ToR is labeled back-

tracking along the predecessor arcs establishes an optimal route.

4, Example

The compound transportation system of Fig. 2(e) is composed by four
different transportation systems which are described by the finite
simple directed graphs of Fig. 2(a),(b),(c),(d).

® ©e_® @

(a) Transportation System 1 (b) Transportation System 2

R ¥ < © © .8

5% o b

(c) Transportation System 3 (d) Transportation System 4

Fig. 2: Compound Transportation System
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(e)

Fig. 2: Compound Transportation System

Roman numerals are assigned to the arcs of the compound transportation

system which help to identify the unit costs of changing from the arcs

in the left-hand column to the arcs in the top

Tab.

row in Tab. 1.

o
= o ~l= Z=lal =B E]=] B
Al ==zl zE B zl<lzlzlR Rz 2 E (2= %]

st 1 f [z

1 ? 113

1 7 113 |4

m 1 Blel114]6]8

] OB

v 1 NEDROE

v 3 ANEEDE

Vil 311 7

VIl AEEBEOBEE

I z T[4

X 1[5 5 ]

X HHE 3

il NEE 5

[T T[4 7

I} ANEE

W 2 T[5 [2 1

Wi A3z T3z 1

Wil E(5(1(5]2

Wil AENALE 3

X% AR BEREG 5

X 711 §

ST0P 2

1l: Unit
Unit costs of Transportation (in the Diagonal)

costs of Changing between Different Transportation Systems,
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Tab. 1 already indicates that in this example an optimal route from

START

node 1 to node 6 is wanted because from arc a a changing to arcs

STOP

I, I1, I1I, from arcs XV, XVII a changing to arc a is possible.

aSTART aSTART

ROCEENNO ®

@ i STOP

(b)

Fig., 3: Optimal Routes from Node 1 to Node 6

The optimal solution is shown in Fig. 3. There are only two optimal
routes from node 1 to node 6 (from arc aSTART to arc aSTOP, respec-

tively) with optimal costs of 25 units of account.

In the optimal route of Fig. 3(a) node 4 is traversed twice but advan-
tageously only one changing from transportation system 3 to transpor-
tation system 2 is necessary. The optimal route of Fig. 3(b) is cycle-
free, but twice changing the transportation systems (from system 1 to
system 4 to system 2) is needed. The discussion whether cycles or
further changings (possibilities of damaging, etc.) are preferable is
left to the reader.
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