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Abstract

A stochastic version of a financial planning problem is explicitly
handled by a stochastic flows-with-gains approach because it is hoped
that the use of network flow formulations will increase the readiness of
adoption of mathematical programming procedures in this area.

The possibility of using flows-with—-gains for the formulation of finan-
cial decisions is known but its combination with stochastic programming.
which allows a more realistic description of the stochastic aspects of
the underlying problem, is new.

An example is included for illustration.

Graphtheoretical Framework for Financial Decisions

Many of the financial decision problems can be formulated as variants of
linear programs (at least after proper transformations) and most of them
can also be presentéd by the help of graphtheoretical tools because of
the resemblance between financial transactions and network flows (see
e.g. CHRISTOFIDES/HEWINS/SALKIN (1979), CRUM/KLINGMAN/TAVIS (1979),

DENK (1978), GAUL (1983), GOLDEN/LIBERATORE/LIEBERMAN (1979), HORST
(1975 a), SRINIVASAN (1974)). Authors using the graphtheoretical frame-
work argue that - on the one hand - the ability to draw a visual repre-
sentation of the problem facilitates communication and understanding and
- on the other hand- graphtheoretical methods are superior in computa-
tional speed to state-of-the art linear programming codes.

Whereas in some cases the possibility of modeling problems within the
area of banking and finance by graphtheoretical or networktheoretical
formulations is only mentioned (see e.g. GREGORY (1976) for cash flow
models, COHEN/MAIER/VAN DER WEIDE (1981) for bank operations and con-
sulting services) in CRUM/KLINGMAN/TAVIS (1979) an impressive pleading
for network descriptions (wheresoever possible) of real world applica-
tions, expecially for large-scale financial planning models, and some

experience with the acceptance by managers is given.
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Although already JEWELL (1962) (who developed the first algorithm for
the solution of the flows-with-gains or generalized network flow problem)
mentions financial budgeting in a warehouse operation as an example for
the application of his flows-with-gains approach and RUTENBERG (1970)
uses a networktheoretical description for his maneuvering of liquid
assets in a multi-national company SRINIVASAN (1974) (see also the re-
writing of the SRINIVASAN-paper by DENK (1978)) seems to be the Ffirst
who explicitly solved his example for cash management decisions using

a transshipment code. GOLDEN/LIBERATORE/LIEBERMAN (1979) claim that
compounding of interest and reinvestment of returns is not included in
the SRINIVASAN-formulation and use a version of the flows-with-gains
approach for a better modeling of the cash flow management situation.

A flows-with-gains algorithm (and other networktheoretical algorithms)
is also used in HORST (1975 a) and in CHRISTOFIDES/HEWINS/SALKIN (1979)
for different types of deterministic arbitrage (trading in currencies
in order to obtain profit from discrepancies in different markets
(space arbitrage), discrepancies because of different maturities (time
arbitrage) and discrepancies between yields on short term investment

in different currencies (interest arbitrage)).

All up to now mentioned approaches are non-stochastic except for GAUL
(1983) where - for the first time - a combination of the short term
financial planning transshipment approach and the short term financial
planning under uncertainty approach is described using the stochastic
flow algorithm of CLEEF/GAUL (1980) applied to a modified SRINIVASAN-
example.

In this paper a stochastic flows-with-gains approach is used to take
into consideration the uncertainty element related to most financial
planning decisions and the already mentioned possibilities of including
compounding of interest and reinvestment of returns in the problem for-
mulation. A modification of the network transformation of the horizon
model for capital budgeting of WEINGARTNER (1963) used in CRUM/KLINGMAN/
TAVIS (1979) is combined with the cash flow management example of
GOLDEN/LIBERATORE/LIEBERMAN (1979) and serves for illustration.

Financial Planning via Stochastic Programming

Having mentioned the POssibility of modeling financial decision problems
by the help of linear programming formulations it has to be emphasized
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that stochastic linear programming should allow a more realistic repre-
sentation of the degree of uncertainty adhered to the prediction of gash
flows, the forecasts of interest rates, and so on. Of course, non-
stochastic descriptions of financial planning situations are easier to
handle, of course, for short term planning the uncertainty element is
less important (see e.g. ORGLER (1970), SRINIVASAN (1974) for arguments
in that direction), but more and more researchers include stochastic
aspects in their model presentations (see e.g. ZIEMBA/VICKSON (Eds.)
(1975), LEVY/SARNAT (Eds.) (1977)) or, at least, mention possibilities
for additional stochastic considerations (see e.g. SARTORIS/HILL (1983)
for a recent paper).

Especially, stochastic linear programming formulations have obtained
great interest (see e.g. STANCU-MINASIAN/WETS (1976) where about 800
references are given (an up-to-date bibliography is under preparation)).
The terms - distribution model - two stage model with recourse - chance
constrained model - distinguish between the main areas of stochastic
programming (see e.g. KALL (1976)) which all have been used for the
description of financial planning problems (recent examples are e.g.
KALLBERG/WHITE/ZIEMBA (1982) for a two stage model with recourse
approach, BRICK/MELLON/SURKIS/MOHL (1983) for a chance constrained
model approach, ALBACH (1967) is an early, BUHLER {19581) a more recent
German contribution).

In GAUL (1983) the short term financial planning under uncertainty
problem was handled by the two stage model with recourse approach within
a graphtheoretical framework using a normal flow formulation (without
gains) for description.

In the following a stochastic flows-with-gains approach will be pre-
sented which combines the two stage model with recourse approach of
stochastic programming with a flows-with-gains approach for the solution
of a typical financial planning situation.

Stochastic Flows-with-Gains Approach

The first notice of the fact that the flows-with—-gains or generalized
network flow approach could be used for the formulation and solution of
financial planning problems was already given by JEWELL (1962) who de-
veloped the first flows-with-gains algorithm (see e.g. [12], [14], [15],
[17]1, [21], [22], [23], [24], [30] for further engagement in the
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flows-with-gains topic), the explicit application to financial decision
situations in the papers [4], [7], [10], [13], [26] has already been

mentioned.

If - for the visual representation - nodes are used to describe sources
of financing (e.g. cash assets, receipts of payments from customers,...)
and uses of funds (e.g. payments of wages, bills for raw material,
taxation,...) as well as interesting time points of planning periods
(e.g. maturity dates, ...), and, arrows are used to describe financial
transactions (e.g. cash flows, borrowing and lending activities, trans-
formations between assets of different liguidity levels and maturity
dates,...) between the just mentioned nodes, many of the characteristic
features of financial planning situations can be figured by the help of
network-flow-theoretical tools.

In this context it is remarkable that, generally, a financial trans-
action fij leaving node i (out-flow from i) undergoes a gain gij (or
loss) before entering node j (in-flow to j) because additional trans-
actions (payments of borrowing or lending rates, costs for ligquidity
and/or maturity transformations, ...) have to be taken into considera-

tion. The in-flow to j is gijfij'

The situation is pictured in the following figure.

out-flow from i in-flow to j
fij
E il u c gij.h_(:)
=t [ e T
ay rj
(a) (b)

FIG.1: Data of the Problem.

In FIG. 1(a) a; denotes the amount of financial availabilities of node
1, rj the amount of financial requirements of node j, lij' uij and cij
denote a lower, upper bound and costs for the financial transaction fij

(out-flow from i) with gain gij' Tt

= —_———— —
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9 5 B undergoes a gain,
gij =1 remains unchanged,
the financial trans-
0 < 95 <1 > * action f£45 undergoes a loss, (1)
e i) (out-flow™ from i) can be interpreted as
ij slack-variable,
9,4 < OJ creates a reversal for the
3J in-flow gijfij to j.

To employ a more formal notation a directed graph G = (N,A,I) (with

node set N, arrow set A and incidence mapping I = (I'!,I?) with mappings
1',I%: A + N which indicate the starting node axis (a) and the end node

I?(a) for every arrow a € A of graph G) is used for the description. In
the non-stochastic case the flows-with-gains problem corresponds to the

following mathematical programming formulation

a(Z:A o, 'L, = min! (2)

1fa - Jgafa =y mEN (3)
{ala€a, 1! (a)=n} {a|a€a,I?(a)=n} =

la < fa s u f a €EA (4)

(some fa—values describe 0-1 integer investment decisions)

where the values v associated to the nodes n € N of graph G indicate
the amounts of financial availabilities (vn =
source of financing) or financial requirements (vn =-I. rn > 0, node

n is a use of funds). At a node n with W, = 0 the sum of in-flows equals

the sum of out-flows (see FIG. 1(b) for clarification).
In (2), (3), (4) the values Cor 9ar 1a' u, (aEA) and i (neEN) are
assumed fixed and known, but for a more realistic description of the

roay > 0, node n is a

underlying problem some of these values should be regarded as random
variables.

This is especially important for the vn(nEN), which describe e.g. un-
certain financial availabilities and/or requirements, uncertain cash
in- & out-flows, uncertain receivables and payables etc., and less
important for the lower and upper bounds la' uy (aeA) of the financial
transactions (see GAUL (1983) for the special case with 9, = 1 (a€h)
but stochastic - and vn-values).

If indices s, d and the symbol ~ are used to indicate the stochastic or
deterministic data membership and the randomness of special values the
following situation arises:
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Assume that v_, neN_ e N(N;=N\N_), and c_, aEAscA(Ad=A\AS) , are random

n
variables on a given probability space (Q,§,Pr) and notice that the
financial decisions f = (f, | a€A) have to be determined before the actual

realizations of the random variables are known. Generally, it will not
be possible to choose in advance the financial decisions £ in such a way
that all realizations gn(m}, weR, nENs, can be met. Thus, there will be
a nonconformity

oS (£) = J£a Jgafa # y (u), neN_ (5)
{alaen,1'(a)=n} {aIaEA I‘(a)—n}
(aviolation of constraint (3)) between an(f) and the corresponding gn(m)
which can be handled in the following sense:

If n is a source of financing and cS(f) > v, (w) (Gg(f) < v, (w)) more
(less) than the available amount was planned for financial transactions
leaving node n and the difference has to (can) be compensated e.g. by
short term loan at interest rate q > 0 (e.g. by investment at interest
yield q % 0).

Similarly,if n is a use of funds (in which case Z. (w) <« O holds) and
0 (£) > v_(w) (0 L)< o7 (w)) less (more) than the required amount was
planned for financial transactions entering node n and the difference
has to (can) be compensated e.g. by short term loan at interest rate
q; > 0 (e.g. by investment at interest yield q: £ 0).

Fore formally these differences are handled by the expression

ap (z, (W=02(£))
£ 4
d (g (w) = ({0 r ¥, (W)

-q (v, (=03 () <

(£) (6)

I
Q

where q:, q; with q; + q; > 0 are the just mentioned compensation costs
(per unit of nonconformity).

Now, instead of (2), (3), (4) the following stochastic flows-with-gains
problem has to be solved

YL S Sl ot (0 . ol il E(d ) = minl (7)
aEAd o aEz‘-\s e e nEN
£ - Yaaf =wv_, nEN (8)
{a[aeg,?‘(a)=n} {a[aEA,?z?a}=n} i &
e E e & ’ aca (9)

a a a
(some f -values describe 0-1 integer investment decisions)
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where expected costs (E denotes expectation) have to be minimized under
linear constraints. Generally, (7), (8), (9) is not a linear program but
if one uses (or approximates the actual probability distributions by)
discrete probability distributions with respect to Yar nENs, the above
stochastic flows-with-gains problem can be solved by a sequence of non-
stochastic flows-with-gains subproblems. How this can be done is
described in the appendix.

Example

For ease of description the following two-assets, three-investments,
four-periods example (a combination of the non-stochastic examples used
in [7], [10]) is presented. FIG. 3 which already provides an ontimal
solution (indicated by the out-flows from the corresponding nodes) shows
how a network flow descrintion can help to clarify such a financial
planning situation. Besides the out-flows only the gains are attached

to the arrows of the graph (see also the difference between FIG. 1(a)
and (b)), the lower, upper bounds and costs, la' uy and c,+ C,+ respec-
tively, are explained in the following text.

For simplicity, the total planning period is divided into only four time
periods (of possibly different durations) and the set of different
assets (distinguished e.g. by different levels of liquidity and different
maturity dates) is considered to consist of only two types of assets

- cash and a special near cash asset - for which transformations from
one into the other are possible at positive conversion costs. For each
asset four time period nodes numbered 1 up to 4 (cash area), 1% up to

4" (near cash asset area), respectively, are used to describe the sub-
division of the total planning period. Borrowing and lending possibili-
ties for cash (only a subset of the set of all such possibilities is
considered) are indicated by the arrows between the time period nodes

of the cash area with gains gi,i+1 = 1,05 (i.e. 5% interest yield per
period) and losses Ii41,4 = (1,171 = 0,909 (i.e. 10% interest rate per
period), 1 = 1,2,3. For these possibilities minimum cash balances

= 5 UA (units of account) and upper bounds for borrowing

=10 UA, i =1,2,3, are presupposed.

1,141
Big1,4

Arrows between i and i indicate the conversion between the two assets
where losses gyi* = 9y#; = 0,98 (i.e. 2% costs for conversion) are
taken into consideration. Besides the conversion possibility the near
cash asset can be held over with gain Tymgaqq = 1,08 (i.e. 8% interest
yield per period). Additionally, there is an (decision-independent)
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II (initial inventory) of the near cash asset of value of 10 UA (units
of account), there are (decision-independent) financial J!xc‘| up to AC4
(availabilities of cash) at the time periods 1 up to 4, and, (decision-
independent) financial RC1 up to RC4(£pquirements for cash), again, at
the time periods 1 up to 4. The amounts of the AC's and the RC's (some
of wich are random variables indicated by the symbol ~ in which case
instead of the non-stochastic amounts the expectations and the reali-
zations together with the corresponding probabilities are given) are
shown in TAB.1.

Instead of minimizing an objective function according to (7) a maximi-
zation of the return from the final planning period is wanted in the
underlying example. Therefore, an additional RFPP (return from the final
planning period) node and two arrows from 4 to RFPP, 4* to RFPP,
respectively, are introduced, and, the objective is

- L
94, rrep £4,repP * 94*,RPPP 4%, REPP nEN R (3
s
under the constraints (8), (9) which include as well investment selection

possibilities to be described in the following.

For further simplicity only a set of three investment possibilities
{11,I2,13] is considered. Two investments I,, I, have four time periods
lives and would start at the beginning of the first time period, the
remaining I3 with a three time periods life would start at the beginning
of the second time period, thus, all investments end at the final plan-
ning period. TAB. 2 describes the different investment possibilities by
their cash flows.

For the performance of the different investment possibilities a LC

(line of credit) of amount of 25 UA could be used. Notice, that three
SU1
borrowing from the LC and those financial transactions using cash from

up to SU3(§upplementary) nodes are needed to distinguish between
the first (or second (for 13)) time period.

Introducing investment nodes (labelled Ii' i=1,2,3) and an ID (invest-
ment decision) node the optimal investment selection can be described
as follows: There are 3 arrows leaving the ID node and 2% investment
combinations according to the number of subsets of {I1,12,I3}. The out-
flows from the ID-node establish the investment selection and are
described by a three-dimensional O-1 integer valued investment decision
vector where (0,0,0) means "no investment" and e.g. (0,1,1) means
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"investment 12 and 13". Thus, in general, a branch & bound procedure
should be performed to reject unfavourable or infeasible investment

combinations.

time period 1 2 3 4 1 2 3 4
AC 1 AC 2 %9 3 Qg 4 RC 1 RC 2 RC 3 RC 4
fixed value
or 5.00 10.00 20.00 15.00 16.00 12.00 8.00 B.00
expectation
realizations 11.00 9.00

13.00 10.00
15.00 12.00
17.00 13.00
20.00 15.00
22.00 16.00
24 .00 18.00
26.00 19.00
29.00 21.00

probabili- . 006 .006
e .021 | .o021
-.068 .082
.216 .202
-320 .290
. 209 .242
112 .118
.042 .033

. 006 .006

TAB. 1: Financial Availabilities of/Requirements for cash
(in UA (Units of Account))

time period 1 2 3 4
investments
I1 - 10 5 5 5
I2 - 12 6 6 6
I3 - 10 7 5

TAB. 2: Cash-flows of Investments (in UA(Units of Account))

FIG. 2 shows the different investment decisions together with the
corresponding values of the objective function (10) and indicates opti-

mality or infeasibility.
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(0,0,0)

i \\\\\\\\s\\i

(1,0,0) (0,1,0) (0,0,1)
15.466 16.107 12.683
(1,1,0) (1.0,1)\ (0,1,1)
= 16.007 16.671
infeasible optimal
(1,1,1)
infeasible

FIG. 2: Investment Selection

In the appendix (see (15),(16),(17),(18),(19)) it is explained how the
flows-with-gains approach can be used to enforce that a decision for
(against) investment Ii causes (hinders) the corresponding cash flows
to flow. Notice, that the cash flow values correspond to the gains at-
tached to the arrows outgoing from the single investment nodes (and
notice, too, that a negative gain creates a reversal of the flow direc-
tion according to (1)).

Lastly, the stochastic nature of some of the data of such financial
planning problems has to be rementioned. Here, for simplicity, it is
assumed that only the 393, Q§4 are random variables. Using discrete
distributions as given in TAB. 1 and choosing two subsequent realizations
for each random variable a deterministic subproblem of the flows-with-
gains type is solved, and, it is checked whether this subproblem already
creates an optimal solution for the original problem or whether new
subsequent realizations of the random variables have to be determined

to yield improvements. After finite many steps the algorithm terminates
with optimality or infeasibility (see the appendix for a more formal
description). CPU-time for the underlying example amounted to about

12 seconds for several test runs.

The stochastic flows-with-gains approach behaves as it should do. It
detects infeasible investment combinations (which would violate restric-
tions imposed by the financial availabilities of/requirements for cash
and the upper bounds of borrowing and the line of credit, etc., and it
determines an optimal financial decision vector f = (fa|aEA) according
to the underlying costs- and gains-structure.
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As can be seen from FIG. 3 in the optimal solution all initial inventory
of the near cash asset and a short term loan of 6.82 UA is needed in the
first time period of the cash area tomeet the restrictions imposed by the
requirements for cash and the minimum cash balance. In the second time
period of the cash area the maximum amount of 10 UA of short term loan
is used to meet the minimum cash balance, to repay the short term loan
of the time period before the actual one and to finance 6.521 UA of in-
vestment 13. In this second time period the first cash in-flow of invest-
ment 12 (which was totally financed by the line of credit) of 6 UA
arrives. In the third time period no further short term loan is needed,
instead, 10.25 UA of cash can be converted to the near cash asset area
where a higher interest yield can be achieved. Notice, that also in the
final time period of the cash area all cash not needed for adjusting the
line of credit is converted to the near cash asset area as no minimum
cash balance is presupposed for the financial transaction to the RFPP
node.

Notice, too, that the amount of 20.182 UA for financing the investment
decision does not utilize the whole line of credit of 25 UA for which
losses of 0,751 for investments I,,I

to be taken into consideration.

and 0,826 for investment 13 have

172

Finally, the planned return from the final planning periods amounts to
11.895 « 1.08 = 12.8466 UA whereas the optimal value of the objective
function of the form (10) is 16.671 UA as indicated in FIG. 2. This
pleasing positive difference is due to the cautious planning of the
in-flows of 15 UA, 13 UA from AC., AC,(the expectations are E(AC,) = 20,

E(AC,) = 15) indicating an additional expected return which depends on
the chosen costs of compensation q; = 1,24 (q; = 1.12) for short term
loan used in time period 3 (time period 4), q; ==1,14 (q; = =1.05) for

short term investment in time period 3 (time period 4) where n, here,

denotes the AC, node (the AC

3 node) , respectively.

4

Conclusion

A network flow formulation together with a branch & bound approach was
used for the description of a typical example from the area of financial
planning. To take into consideration the uncertainty element related

to most financial planning decisions tools from graph theory and
stochastic programming have been combined to a stochastic flows-with-gains
approach. Advantageously, the stochastic flows-with-gains formulation



for cash

3 (decision-independent) ;
financial requirements

@

(decision-independent 8ld 4 8
financial availabilities © .
of cash P [ s ]

invEstment decision

20.182

return from
the final planning period

FIG. 3: Two-Assets, Three-Investments, Four-Periods Example with
Optimal Financial Transactions (in UA (Units of Account) )
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of the financial planning problem was solved by a sequence of non-
stochastic flows-with-gains financial planning subproblems (for which
solution procedures as given e.g. in [7], [10] could be used). If a more
thoroughly structured total planning period is needed a multiple-period
unequal-period periodically recomputed schedule as given in GAUL (1983)
can be formulated and solved within the stochastic flows-with-gains
approach without difficulty.

Appendix
If vn!, X = 1,...,xn, with Vi1 < Vi <...<vnxn denote the realizations
of the finite discrete distributed random variables v , n ENg, the
stochastic flows-with-gains problem (7), (8), (9) can be rewritten as a
linear program of the form
(o300 SIS BN o - U T SO in(q+y+ +g y__)Pr(v_=v__) = min!
aea, aa aca_ ~a’'"a neN_ x=1 n nx -n‘nx ~n nx
Lfa = 19af =v, 4+ nEN (11)
{a|a€A,I'(a)=n} {a|a€h,1?{a)=n} " 2
G + - 5 o
Un(f) + - Yo =My 0 n e NS, x—1,...,xn (12)
1, s £, s u, ¢ a E7A (13)
+ -
Vo 20¢ ¥ =0 N noE N, x=T,000,x (14)

(some fa—values describe 0-1 integer investment decisions)

where y;r, describe the nonconformity according to (5), and, for

”
nx
which - dependent on the numbers x of the realizations of the random

variables Ve D € Ns - the dimensions could grow too large (at least when

using approximation arguments) to be handled by conventional LP methods.

Supposed, there is a subdivision of the total planning period into T
time periods (subperiods of possibly different durations) then, at least,
T time period nodes are needed to create a cash area in which cash in-

& out-flows dependent on these different time periods can be distin-
guished.

If, additionally, {11,...,Im} is a set of interesting investment possi-
bilities, and, if each I; is described by its sequence of periodic cash
flows then, at least, m investment nodes and arrows from each investment
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node to those time period nodes in the cash area for which non-zero cash
flows exist are needed to affix an area of investment decisions to the

cash area (see FIG. 3).

Introducing an ID (investment decision) node the selection of an optimal
combination of investment possibilities can be performed by a branch &
bound procedure by computing an m-dimensional investment decision vector

of 0-1 integer values IN = (f |ie{1,...,m}) with
i

ID,I

1, Ainvestment Ii is selected
£rn.1. = 7 Al peewym} (15)
et ! 0, otherwise

rejecting investment combinations which would violate financial
constraints or which have a less preferable value of the objective func-
tion of the underlying mathematical problem. If
91p,1 corresponds to the number of non-zero cash flows of Ii (16)

A
the following constraints (a subset of the constraints of the form (11),
(13))

£ - g f =200 5 o TLElT e} (17)
R, Lo gy 2T AEDYTETER Ty 1= m
0 s fIi’t s 1
force
1 1 for all te{1,...,T} for which
£ = = f = (18)
ID, I, o] g 0 non-zero cash flows exist
If, now,
91, ¢ corresponds to the cash flow of Ii for time period t (19)
i’
the in,t fIi,t in-flows (notice, that a negative gain value creates

a reversal of the flow direction according to (1)) describe the peri-
odic cash flows of I,, i€e{1,...,m} (see FIG. 3 where additional supple-
mentary nodes are needed to distinguish between possible borrowing ac-
tivities from a line of credit and financial transactions which use
cash from the corresponding time periods out of the cash area).

Additional nodes for (decision-independent) financial availabilities
and requirements of cash and different types of assets can be incorpora-
ted as well as additional arrows for the appropriate financial
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transactions but for space limitations a discussion of such possibili-
ties as given in the example has to be sufficient.

To avoid difficulties with the solution of the stochastic flows-with-
gains problem of the form (11), (12), (13), (14) one can proceed as
follows:

First, select the investment decision vector IN = (fID 1 |ie{1,...,m}).
' r
i

Second, select, for n € Ns’ subsequent realizations v i v ) and

nx, n(xn+1
define a realization index vector x = (xn|n (= NS).
Third, create a new graph G* = (Nx,Ax,Ix) and solve the non-stochastic
flows-with-gains problem (of nearly the same size as the non-
stochastic problem (2), (3), (4))

X
alax % fa
1fa -  Jgafa SHO. i e NE (20)
{a|aEAx,IXi(a]=n} {a|aEAx,Ixz(a)=n]
1§sfasn§ SiaEla* (21)

In CLEEF/GAUL (1980), GAUL (1983) the construction of G* and
(c:,l:,uglaenx) is described. The optimal solution f of (20), (21) shows
how an optimal selution for (11), (12), (13), (14) has to look like if
for certain optimal dual values (of the dual program to (20), (21))
aﬁ,Bﬁ attached to the stochastic counterpart nodes n € N: (=NS) the
following condition

a* g (q;+q;) Pr(v =v. . ) (22a)

n nx,

y D€ Ns
X
n

(22b)

BX s (qi+a)) Prlv =v

)
n(xn+1)

is valid. Otherwise the realization index vector is changed according to

1 , n for which (22a) is not valid
XV = + {(-1), n for which (22b) is not valid (23)
0O , otherwise

After finite many alterations of the form (23) an optimal solution fIN
of (20), (21) dependent on the investment decision vector IN is deter-
mined.
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A branch & bound procedure with respect to IN gives a global optimal
solution.
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