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RELIABILITY-ESTIMATION IN STOCHASTIC GRAPHS
WITH TIME-ASSOCIATED ARC-SET RELIABILITY
PERFORMANCE PROCESSES

Wolfgang GAUL
University of Karlsruhe (TH), West Germany

In this paper situations are considered in which the reliability-behaviour of the
arcs of stochastic graphs is described by time-associated reliability performance pro-
cesses.

Reliability-estimations, e.g. lower (and for special cases upper) reliability bounds —
additional to the known minimal cut lower bound of Esary and Proschan — are yiclded
by a proper decomposition of the underlying stochastic graph. This decomposition al-
lows a successive determination of the reliability estimation by using reliability esti-
mations of stochastic subgraphs which should be of interest when the underlying stoch-
astic graph is large.

Comparisons of the different bounds are made within an example of simplest
form.

1. Introduction

There are some interesting directions concerning stochastic aspects within
application-relevant graphtheoretical problems, one of them consists in stochastic
programming on graphs, see e.g. Cleef and Gaul [6], [7], another in models of
the reliability-behaviour of graphs.

In most papers dealing with reliability problems in stochastic graphs the
model description is done from a static stochastic viewpoint allowing that the
elements of the graph (nodes, arcs) can take only two states — functioning or
having failed — with probabilities independent of time.

Graphtheoretical reliability measures depend on an appropriate connectivity
notation (well-known measures are given e.g. by the probability that a specified
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pair of nodes or a specified subset of nodes belong to a “connected functioning
subgraph,” a notation which has to be defined according to the fact whether
directed or undirected graphs are used in which nodes and/or arcs are subject
to random failure).

Of course, the simpler the structure of the underlying stochastic graph is the
more realistic stochastic descriptions are possible (see e.g. Barlow and Proschan
[1], where — if the underlying stochastic graph is a path with reliable nodes
(a series-system built by the arcs of the path) — tools from availability theory
in connection with renewal theory can be applied).

However, standard reliability problems in stochastic graphs don’t use time-
associated reliability performance processes for model description as will be
assumed throughout the rest of this paper, thus, literature concerning some known
directions of reliability graph problems is not explicitly mentioned here but
see Frank and Gaul [14] (where connectedness probabilities in stochastic graphs
with randomly failing nodes and arcs are considered), Gaul and Hartung [18]
(where bounding distribution functions are computed when the arcs of the under-
lying stochastic graph can take several states of reliability between complete
failure and perfect functioning, see also Barlow and Wu [3], El-Neweihi, Proschan
and Sethuraman [9] for the first description of multistate reliability models)
and the references cited there.

With respect to the dependence structure of the random variables used for
model description of reliability problems association (which was first mentioned
in Esary, Proschan and Walkup [13], a more recent paper is Jogdeo [20]) can
be used. Weakening the usual and restrictive independence assumption to the
case of time-associated performance processes was done in Esary and Proschan
[12] and is adopted here to derive estimators, e.g. lower (and for special cases
upper) bounds for the nodebasis — nodecontrabasis (see Harary, Norman and
Cartwright [19] for graphtheoretical notations) connectedness probability in stoch-
astic acyclic digraphs — additional to the known minimal cut lower bound of
Esary and Proschan.

This bound was first established in Esary and Proschan [11] and improved
by Bodin [4] using modular decompositions (for the use of modules which are
also of interest in fields other than reliability theory see e.g. Butterworth [5]),
its generalization to the time-associated case was given in the already mentioned
paper by Esary and Proschan [12].

In this paper reliability-bounds are constructed by means of a proper de-
composition of the underlying stochastic acyclic digraph first described in Gaul
[16] for project digraphs.

Dependent on the used decomposition improvements of some of the bounds
(including tho:e of Esary and Proschan) can be obtained. Comparisons of the
different bounds are made within an example of simplest form.



Reliability-estimation in stochastic graphs 109

2. Problem formulation

For ease of description some of the frequently used graphtheoretical notations
are given in the following, for more detailed and additional explanations see e.g.
Harary, Norman and Cartwright [19].

Let D=(N, A, f) describe a digraph where N#0 denotes the set of nodes,
A the set of arcs, f=(f*,f?) with f*: A»N, i=1, 2, the incidence mapping with
fY(a), f?(a) as starting-, end-node of ae A. For abbreviation, sometimes, only
D is written for a digraph in which case N(D), A(D) is used to denote the nodes,
arcs of D. The incidence mapping is mostly omitted. In this case the tupel (N (D),
A(D)) is used instead of D.

For two digraphs D, i=1, 2, call

D,cD, (subdigraph) iff N(D)=N(D,), A(Dy)=A(D,),
D, "D, (union, intersection digraph) iff N (D, YD,)=N(D,) s N(D,),

A(Dy D3)=A(D,) y A(D2).

In the following it suffices to consider only gsp (generalized series-parallel)-
digraphs of the form

DPI':(N(DM)’ A(DN))

which are finite, acyclic, weakly connected directed graphs the nodebasis (node-
contrabasis) of which consists of the single node p e N(D,,) (¢ € N(D,,)). gsp-
digraphs are of importance because they generalize the description of two ter-
minal series-parallel systems which obviously can be represented by gsp-digraphs.
They also enclose project digraphs (when parallel arcs are not allowed) structural
properties of which have been described in Gaul [16] and can be used in the follow-
ing context.

One question is whether for a given pair of nodes i, je N (D,,) there exists
a gsp-subdigraph D;;c D,,. If this is the case, special gsp-subdigraphs of interest
are the maximal gsp-subdigraph denoted by D, ; and the minimal gsp-subdigraphs
denoted by P,; and called paths from i to j. (P, (Py), k€ N(Pyy), gives the
subpath of P, from i to k, k to j, respectively. The set of paths belonging to
D; is denoted by P(D,;).

For a gsp-d'graph D,, there exists a bijective mapping called (ascending)
level-assignment / : N(D,)—+{0, 1, ..., m} (m=|N(D,,)|—1) with

aed = I(f'(a)) < I(f*(@) (and I(p)=0, [(@)=m).
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With the identification N(D,):={0, 1, ..., m} the nodes of D,, are assumed to
be topologically ordered according to such a level assignment (this assumption
is needed for the successive determination of the reliability estimation), and,
from now on

the notation Dy, is used instead of D,,. (1)

N (50,,.) is assumed to consist of perfect nodes only (which do never fail). 4 (ﬁu,,,)
consists of unreliable elements the reliability behaviour of which is described
by the (vector) reliability performance process

{X(1), teT}={(X.(1), ac A(Dqn)), te T},

where X,(t) are Bernoulli-distributed random variables on a given probability
space (2, G, Pr) with

1 arca is functioning .
X (= at time , acA(Dy,), teT<[0,0). (2)
0 otherwise,

For fixed we Q the sample functions X,(f, w) are assumed to be continuous
from the right on T.
Now, for fixed time ¢ € T, the stochastic graph is described by the tupel

(N(Dom)s ADom) s S (Xut), ac A(Dy,)))

but, again, at least for mainly graphtheoretical considerations the incidence
mapping and the reliability performance processes are omitted.

With respect to the dependence structure of the random variables describing
the reliability-behaviour it is presupposed that the reliability performance pro-
cess is time-associated, which means that for all finite sets of times T,={¢,, ..., 1}
cT

{XA0), teT, aeA(Do,)} is a set of associated random variables

(see [2], [12], [13], [20] for properties of association or/and time-association
and the discussion of special cases as independence and positively total depend-
ence and a variety of maintenance sitliations).

Of course, for two nodes i,je N(D,,) for which gsp-subdigraphs D,; exist,
an interesting question is whether there will be a functioning path P;; (a path
with functioning arcs) from 7 to j.
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More formally, for every gsp-subdigraph D; a so-called structure function:

1 there exists a functioning
Pp,= path P, eP(Dy),
0 otherwise,

can be defined with its path-representation

QD:J(X(I))=1_ l-[ (1_ l_I Xﬂ('))= max { ]._[ Xa(t)}' 3y

Pyye P(Dy) ae A(Py) Pyye P(Diy) aeA(Py)

Using the minimal cuts of D;; — a minimal cut C;;c4 (Dy)) is a minimal set
of arcs with the property Cy; n A(P;)#0, Y P, e P(D;) — the following cut
representation

oo, (X(0)=_TI jw,,(X(r)) (with g (X(0)=1— T] (1=X.(0)

CiyeC(Dy aeCyy
4y

is equivalent to (3) where C(D,;) denotes the set of cuts of Dy;.

For fixed time te T the structure function gp,, is a binary non-decreasing
function with ¢p,,(0, ..., 0)=0, @p, (1, ..., D=1

For fixed we 2 the sample function g¢p, (X(z, w)) is continuous from the
- right on T.

Rp,(0)=Pr(gp, (X (1)=1, VteT()) (with T(z)=[0,11nT)
5y
is an intuitive reliability measure for a gsp-digraph D, but for larger and more
complex structured graphs the determination of the exact value of (5) can be
difficult.

In this situation one can calculate the minimal cut lower bound of Esary and
Proschan

EPp ()= T] Re,(7) (6)

CyeC(Dy)
(with Re,,(r)=Pr(pc, (X ())=1, ¥ t € T(7))) for which
{X (1), te T} time-associated = Rp, (t)=EPp,(7) 7y

is valid, and, of course, additional bounding possibilities for the reliability esti-
mation would be of interest.
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3. gsp-digraph decomposition

With respect to the given gsp-digraph 50,,. the following notations are useful:
Let be

8,={Dy,, D, is gsp-subdigraph, i<n}

:a system of gsp-subdigraphs which all have the same nodecontrabasis n e N (50,,,),
l<n<m,

B(5,)={i, ieN(Don) > Din€3,}

the set of the nodebasis-nodes of the gsp-subdigraphs of d,.
Call 6, proper if

({i,n},0) i=iy=i,

1 2 . nl &
VDi;usDtgn65n- DhnﬁDI:n'_{({n},e) OthefWiSE, (8)
VPOHCEOM aiEB(ﬁn)ﬂN(Bom)- D‘"66”:

(Pon)In'Snc(B(an)’ 0) (.9»)

PCln:(POn)IU(POn)‘ Wlth
(Po,) ' €P(Dyy) -

Such proper gsp-subdigraph systems always exist, e.g. 6,,={5°,,} is proper.
Because of (8) the gsp-subd graphs of the proper d, are arc-disjoint and node-
disjoint except for the common nodecontrabasis nAand, eventually, a common
nodebasis i, (9) establishes a relation between P(D,,) and &,. For properties
-of proper systems of project d'graphs see Gaul [16], the following theorem (for
the proof of which see Gaul and Hartung [18] in the more general multistate
reliability framework) gives a hint why proper systems of gsp-subdigraphs could
be useful.

“Theorem 1. If 5,.={D,,, is a proper gsp-subdigraph system then

o =1— [1 (1= 93, #n,)= max {p5, Po,.}-

Din€dn Dinedn

From Theorem 1 it follows that a successive determination of the structure func-
tion (for n=m one gets the structure function of the underlying gsp-d‘graph
Do, is possible which depends on the chosen proper gsp-subdigraph system J,.
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Among different proper gsp-subdigraph systems the following relation will
be of interest:

If 6,={D,}, 6, ={Dy} are two proper gsp-subdigraph systems with
A(3,)>A(0Y) then there exists a proper gsp-subdigraph system o**
={Dw,} With

(i) AG")=A(5,),

(10)
(ii) YDA, e5* 3 DEeo™*: D, DX,

For &7, or* fulfilling (10) the notation &) € d;"* is used.

4. Reliability estimation via lower (upper) bounds
The results of the following lemmas are needed.
Lemma 1.
N I
oy €0, 1], k=115 %G =
(i) max {[Tau}< [T max {o},
1<isr k=1 k=11sisr
L) r s
(i) max {JTeu}<1—TT(1— TTow),
1<isr k=1 i=1 =1

T :, additional ﬂ(u‘?au‘z, kxskz, Vl: =
X 8 Ed r 5
(iii) max { [To}= [T max {oz}=1—TT(1— J]ow).
1sise k=1 k=11sisr =1 k=1
Proof.

(i) is obvious for less restrictive assumptions.
5
(ii) follows with y,= [ ] o by induction with respect to r.
k=1

(iii) Nothing has to be shown if max {u, }=0 for some koe{l,...,s},
1=<isr

but max {u;}=1, Vk, causes the existence of iy e {1, ..., r} with o,=1 and
1<i<r

because of the non-increasing property o,=1, Yk. O
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With the definition (see Esary and Marshall [1o0p

a device with reliability performance process {X(n), te T} has a life
in T(z) if Pr(X(0)=1, Y1e[0,8)|X(s)=1) = 1 for all se T(r) with
Pr(X(s)=1)>0 holds,

one has
Lemma 2. If D is a gsp-digraph with life in T(7) then
oo(X(1))= op(X(12)), ti<tz, t1,12€ T(7).
Proof. Let be
A={o|pp(X(t2.0)=1} with Pr(4)>0, A ={|pp(X(t,,0) < @oX(t2,0))}-
| One has A = 4 because ¢, is a binary function. From Pr(}i)>0 the contradiction

Pe(pu(X (0)=1, Vre[0, t2)] po(X (1) =1)
Pr(A\A)
<Pr(pp (X (1) =1|pp(X (1)) =1)= ;”:(A)_<1
follows. [

Remark. It is Lemma 1(i) which always allows to get lower reliability bounds.
Lemma 1(ii) indicates a possibility which can yield improvements for lower
bounds but only if special gsp-subd'graphs have lives in T(r) upper reliability
bounds are obtainable according to Lemma 1(iii) by using the non-increasing
property of Lemma 2.

For the proofs of the following theorems notice that if

EcT(7) is a countable, dense subset of T(1),
Te={t1, ..., iy = E is a finite subset of E with T, E (k— ), (11)
‘ D, D,, D, are gsp-subdigraphs of a proper J-system,

then
Pr(gn(X(1)=1, te TN Pr(gp(X (1)=1, Vt€E) (k—c0) (12)

by monotone convergence, and,

Ry(1)=Pr(px(X(1))=1, VtcE) ‘ (13)
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because ¢, (X (t, w)) is continuous from the right for fixed w € Q. Furthermore, if
{X(1t), teT} is time-associated
then

{pp(X (1)), teT} is time-associated (14)
because ¢p(X(1)) is a binary non-decreasing function for fixed 7€ 7, and, as

{pp(X (1)), teTi} is a set of associated binary random variables for
D1 5 Dz =)

k k k
E[ 1_[ 'PD,(X (fz)) ‘PD;(X (f:))] = E[ H ¢’D;(X (’x))] E[ H ?D;(X (t,))]
x=1 x=1 x=1 (15)
is valid,
Now, assume that with respect to a proper gsp-subdigraph system &,={D,,}
lower and upper reliability bounds for R3,, (%), i € B(d,), are known, i.e.

L(t)<Rp,(1)<U(r), i€B(d,), (16)
and define

L,(7) =DT3§H{La(r)Rph(r)}. (17

U (n)=1 —Dﬂan(l —U(t)Rp,(1))- (18)

Theorem 2. If J,={D,} is a proper gsp-subdigraph system, if {X(1),teT} is
a time-associated reliability performance process then

Rp, (1) = L,(7).

Proof. In consideration of (11-18) one gets for the finite set of times T

Pr(pa (X (0)=1, 1T)=Pe(] P (X ()=1)=EL ] 05, (X (1)

k
=E[]] max {5,(X () po,(X (1.))}]

x=1 D.,.sa,.

k
>E[ max {leso,(X (1) e (X (t))}]

Din€dn x=
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= max {E[ ]:[1 250X (1)) 00, (X (t))1}

Dyp ey

ke k
> max (E[ I o5,(X W)IEL IT pa (X))

Dinedy

= max {Pr(pp, (X ()=1, te T,)Pr(pp, (X (1))=1, te T)},

Din€dn

where after application of Theorem 1 the first inequality follows from Lemma I (i),
the second inequality from Jensen’s inequality because of the convexity of
the max-operator, and the third inequality from (15). Applying (12), (13)

and (16), (17) gives

Rp, ()= max {Rp, (t)Rp,(7)} = max {L(t)Rp, ()}=L(7). O

Dinedn Dinedn

Theorem 3. If 6,={D,,} is a proper gsp-subdigraph system, if {X(t),te T} is a
time-associated reliability performance process, if the component processes {(X,(t),
ae A(8,), te T}, {(X.(1), ac A(S,)), te T} are independent then

(i) L{1)<UL(7),
(ii) Rp, (1)<U,(7),

if, additionally, Do, i€ B(3,), D, € 6, have lives in T(z).
Proof.

(i) In consideration of (11-18) one gets for the finite set of times T}

max {Pr(pz,(X(D)=1, te T)Pr(pp, (X (1)=1, te T,)}

Din€dn
k
<ELmax { T] 05,(X (t) g0, (X (t)}]
k
<1—-E [D ],_[a (l = l;[l ¢501(X(’l)) ?Dm(x(tx)))]

k
<i— [I (1=EL [] 05,(X (1)) 0, (X (t))1)

Du‘ﬂﬁn

=1— [T (1-Pr(gp,(X (1), te T)Pr(pp, (X (1))=1, te T)),

Dinedy
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where the first inequality follows from arguments used in the proof of Theorem
2, the second inequality from Lemma 1(ii), the third inequality from (15) (as

k
{1—- 1;[1 05, (X (1)) 95, (X (1)), Din € 5,}

is a set of associated binary random variables) and the last equality from the
independence assumption of the component processes. Applying (12), (13)
and (16), (17), (18) gives the result.

(ii) Similarly,

k
Pr(pp,(X(0)=1, te T)=EL [ max {p5,(X (1) pn, (X (t))}]

x=1 Din€dn

—1=EL [T (- TT 03X ()00, (X))

D.,.a&,.

<1— I (1-Pr(pp (X (0)=1, 1€ T)Pr(pp (X (1)=1, e TY),

Du\a l’n

where the first equality follows from Theorem 1, the second equality follows from
Lemmas 1(iii) and 2 because the gsp-subdigraphs have lives in T'(7) (where #;
<...<t, is assumed for the times of 7}) and the last inequality, again, from (15)
and the independence assumption of the component processes. Applying (12),
(13) and (16), (18) gives

Rp, (0)<1— T[] (1=R3,(*)Rp,(D))<1- 1 (=Ui(® Rp, (7))
Dy € 8y Din & 8n
=U,(7). O
Of course, an interesting question is whether it is possible to get improved

bounds by changing from one proper gsp-subdigraph system 5* to another &;*.
The answer is given by the following.

Theorem 4. If 8*={Dp,}, 03*={Dp,} are proper gsp-subdigraph systems
with 6% c**, if {X(1), te T} is a time-associated reliability performance process
then
" B,
(i) L) Rpmp(D)ZLis(1)s .
i* € B(3,) " N (D),

= [¥()>Li),
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i*eB(@M),

e IFi R"u‘ \U- 3
(i) Uim(®)Rgjoeo(1) S Up(x) i*€ B(5;) N N (Djw,),

= UM(1)<U¥(z),

if, additionally, Dy, i** € B(5*), i*e€ B(5*) A N(Dpy), Dy et
have lives in T'(v), and, if the component processes {(X,(t), ae A), t e T},
{(Xa(t),ac A(S})), te T} with A(6})w A=A(S™), A(5*)  A=0 are
independent.

Here, to include the dependence of the lower (upper) reliability bounds from
the chosen proper gsp-subdigraph system, the notation for the bounds is slightly
different from (17), (18).

Proof. First, notice that for dy, 6y* with ¥ cd¥* (see (10))
6:/.0]"" = {Dp" 3 D‘-n € (s: n D‘nn}

is a proper gsp-subdigraph system (with respect to the gsp-digraph D,..,) and
Theorem 1 gives

W.D;"uz max {(03‘--‘- {01)‘-"}
Di*n € 83/Di*y

=1= []  (1=pDumeon)- (19)

Di*nedf/Di**y

(i) Although this is the more relevant statement of Theorem 4 the proof follows
directly as a consequence of replacing @pgs, by (19) and is omitted.
(ii) One has

UpD) [T max  {p50s(X (1)) oo, (X (1))}

=1 Di*wed)/Di*,

= max { [T VUu(®) pppmn(X (1)) 00 (X (1))}

Di*n e d%/Di*y x=1

k
Si= [ (1-Uw(x) 1-[1 PDee(X (1) 0o, (X (1)) (20)

Di*y e 83/D*,,

where the equality follows from Lemma 1(iii) applied to the max-expression
(because the corresponding gsp-subdigraphs have lives in T'(7)) and an exchange
of Ulua(7) (which is not affected by the max-operation) with the max- and the
H-operator and the inequality from Lemma 1 (ii).
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Now

1= [I (1=Um(x)Pr (ppoe (X (D)=1,1€ 7))

Di**nedp®

=l 1_.[ (1 —E [UI"(T) ﬁ max {'Pﬁi“l'(x (‘l)) ¢’m'n(X (t:))}:])

D edy® x=1 Di* ed}/Di*n
n

< 1- ]._I ]._[ (1 — Ul"(T) E [ l:li Q’ﬁi'ﬁ‘(x (tl)) WD.'..(X (tl))])

D% €85 Di*n € 33/ Di*n

=t= 11 (1-U‘..(t)Pr(rpﬁl..,.(X(t))=1,reT‘,‘)Pr(%‘.“(X(t)):l,te']})),

Di*nedn

where the first equality follows from (19), the inequality from (20) and an associa-
tion property of the form

r r
{Z,, ..., Z,} non-negative associated =-E 1z [l EZ

i=1 i=1

(which is similar to (15) and can be proved along the lines of the induction argu-
ment used in the proof of (3.1), Chapter 2 in Barlow and Proschan [2]) and the
last equality from the independence assumption. Applying (12), (13) and (16),
(18) gives the result. [

Of course, the decision which of the proper gsp-subdigraph systems Jy, ot
with 6*c6** one should choose will depend on the fact, how good the given
bounds Lye, U, i*€ B(0)), Limy Uses, i**€ B(5**), respectively, are as well
as on the knowledge about and the difficulties for the possibilities of the determina-
tion of the reliability of the gsp-subd graphs of the proper systems.

Instead of formulating further conditions for such an optimal choice the next
section shows that the just developed approach allows remarkable improvements
even in an example of simplest form. From the preceding theorems one gets
the following.

Procedure

Step n. Choose ne N (50,,,), 1<n<m, and a proper gsp-subdigraph system
8,={D,,} for which lower (upper) reliability bounds L;() (Ui(z)), i € B(d), are
known (with Lo(7)= Us(z)= 1). Determine L;"(7) (U (1))

Use these bounds to increase # in a suitable way (remember the level assignment
of the nodes) until m is reached.
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5. Example

To illustrate the theoretical results the following example is given to show that
bounds additional to the minimal cut lower bound of Esary and Proschan could
be of interest for reliability estimation. In the gsp-digraph of Fig. 1 the numbers
attached to the nodes give a possible level assignment. The cross-connection arc
(2,3) from 2 to 3 hinders straightforward series-parallel reduction.

Fia. 1.

The arcs are assumed to have lives in 7(z) with lifetimes independently ident -
ically exponential-distributed with parameter 1, i.e.

Pr(X,(t)=1, Vte T(1))=Pr(Life,>1)=¢* (=Pr(X,(t)=1)), (21)

where Life, is the random variable describing the lifetime of arc a.
As there are:
three paths

Pys=({0,1,3,5}, {(0,1), (1,3), 3, 5)})
P35=({012: 3, 5}3 {(0;2),(25 3)9(335)})
P3s=({0,2,4,5}, {(0,2),(2,4), 4, 5)})

and nine minimal cuts

Cos={(0,1),(0,2)}, C8={(0,1),(2,3),(2,4)}
Cos={(0,2),(1,3)}, C3s={(1,3),(2,3),(2, 4}
Cos={(0,2),(3,5)}, Cbs={(0,1),(2,3),(4,5)}
Cos={(2,4),(3,5}, C3s={(1,3),(2,3),(4,5)}
Cos={(3,5),(4, 5)}
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one easily gets from (21)
22y
B oA 1-@=e"*),1e{l, ..., 5},

The easiest bounds using path representation are

Li(r)= max_{Rp,(7)}= i

Pos e P (Dos) (23)
Ul@)=1— T[] _(1=Rp,(2))=1—-(1—e"*)*,
Pos € P (Dos)

For the proper gsp-subdigraph system ds={D,s, D35}

with D,s=({2,4,5},{(2,4),(4,5)}), Rp,(v)=e?*,
and ﬁ35=({3s 5}: {(3 s 5)})9 Rﬁ,,(‘r)=e"',

no lower (upper) bounds for De,, i € B(Js), are needed because the exact relia-
bility

Rp(1)=e"* for Do,=({0, 2}, {0, 2)}),
Rﬁox(‘r)=1_(1_e_‘2h)z fOI‘ bo3=({03 1: 2, 3} ] {(0, 1): (0: 2);
(1,3),(2,3)}),

is easily obtainable, the corresponding bounds (see (17), (18)) are

Li(D)=(01-(1—-e"?)e*,

(24)
Ui()=1—-(1—e *e ) (1-(1-(1—e ")) ™).

For the minimal cut lower bound of Esary and Proschan one gets from (22)

EP5, (1) =(1—(1—e (1 —(1—e7*7)". 25)

The bounds (23), (24), (25) are given in Table 1 together with the exact reliability
value (denoted by R) for different values of A and 7. The results indicate that for
high reliabilities the EP-bound can be better but that the suggested decomposition
of gsp-digraphs with respect to proper gsp-subdgraph systems (for which
improvements according to Theorem 4 are possible) becomes more and more:
interesting for increasing time.



W. Gaul

422

00000°0
00000
T00000
200000
10000°0
T0000°0

000000
LEODO'O
LEODOO
LEODD'O
£20000
<1000°0
00000
YELOOO
L0000
8€L00°0
16¥00°0
8¥200°0

SEYTO00
CEPEL'D
soTvio
008E1°0
¥8T60°0
6L6Y00
0ol

000000
900000
90000°0
900000
00000
200000
0000070
1600070
1600070
1600070
190000
0£000°0
8000070
6ZE10°0
6FE10°0
6EE100
168000
sH000

89110°0
TLOLT'O
LESSI'O
T8I0
0EETI'0
ITL90°0

06

” I
r l\
000000 00000°0
020000  L9000'0
0T000°0  L9000°0
020000  L9000°0
¥1000°0  £¥000°0
L0000°0 <0000
000000 TO0000
£2C00'0  S¥S00°0
¥TT00'0  0SS00°0
€2700°0  LPS000
601000 S9£00°0
SLO000  ¥8100°0
LEODD'0  T9100°0
968700 6621070
6PFT0°0  TEFHO0
Tre0’0  $9tt00
19100 806700
£7800°0 005100
LOGLO'0  9EVETO
660€T°0  EV66T0
1T8%T°0 TTYTE0
Y06ET0  880IE0
TIE9ro  TLviTo
TLOGO'0  9%TTI0
08 oL

00000°0
£2200°0
¥TT000
£2T000
671000
€L0000
8000070
6TE10°0
6¥E100
6£E10°0
168000
sP00°0

09900°0
6+9L0°0
€L6L00
LOBLOO
LI1TS0'0
TELTO'O

96L1T'0
66EBE°0
eI1vo
6966£°0
1808T°0
0£S91°0

09

700000
YELOD'O
TVLOD'0
8€L00°0
16+00°0
8YT00°0

8L000°0
TITE00
96T£0°0
£STE0°0
991700
TIr0o

SEPTO'0
ErEnro
OTr1'o
008ET'0
¥8TE00
6L610°0

OPSEE™0
£958¥°0
PIIESO
€0905°0
81¥9£°0
EIETTO0

0's

LE0000
965700
6¥¥20°0
TTYToo
T1910°0
£T800°0

099000
6V9L0°0
SL6LOO
LOBLOO
L1Z50°0
TELTOO

LO6LOO
6E0ET'0
1Z8vT°0
F06ET0
zieero
L0600

£198%°0
00£09°0
§L859°0
LSLT90
S0L9F'0
6110£°0

0y

099000
6¥9L0°0
SL6LOO
LOBLOO
LITSO0
TELTOO
89%%0°0
TLOLT'O
LEBRIO
Tesio
OEETI0
12L90°0

96L1T°0
66E8E°0
¥8IF0
6966£°0
1808T°0
0€€91°0

0185970
190£L°0
016L0
0L95L°0
1006570
LS90F0

0€

LO6LO°0
660ET°0
128¥C°0
PO6ET0
TILaro
L0600

96L1T°0
66€8E°0
Pr8IF'0
6966£°0
1808T°0
0Es91'0

£198%°0
00£09°0
SLBS90
LSLT90
S0L9Y'O
6110€°0

L1928°0
80958°0
S1806°0
908480
PL6TLO
I88%5°0

0T

£198%°0
00£09°0
SL8S9'0
LSLT90
SOL9Y'0
6110E°0

0%859°0
190€L°0
le6Lo
0L9€L’0
10065°0
LS90¥°0

L19T8°0
809¢8°0
£1806°0
908L8°0
YL6TLO
188750

¥TTs6'0
LILS60
65T86°0
£9L96°0
115.8°0
T80FL0

0T

dd
o
n
’n
T
s &

i
b
'n
n
!
T

dq
o
'n
n
e
L7

dd

F
'n
n
T
Ly ;

=2

0t0

0z'0

or'o

¥ >dF pue ') ST SYSETS VT s ¥ 10] spunoq Lqeip g7 g 7

121981



123

Reliability-estimation in stochastic graphs

000000
0000070
00000°0
000000
000000
00000°0
00000°0
00000°0
00000°0
000000
000000
00000°0
000000
0000070
00000°0
0000070
00000°0
0000070

00000°0
000000
000000
0000070
00000°0
0000070
000000
00000°0
0000070
0000070
000000
0000070
00000°0
000000
0000070
00000°0
00000°0
00000°0

000000
000000
00000°0
000000
000000
000000
000000
00000°0
000000
000000
000000
0000070
000000
000070
200000
7000070
1000070
100000

00000°0
0000070
000000
0000070
00000°0
000000
0000070
0000070
00000°0
000000
000000
0000070
00000°0
80000°0
8000070
800000
900000
€0000°0

00000°0
0000070
0000070
0000070
0000070
0000070
0000070
00000°0
000000
000000
000000
000000
000000
LE000'0
LE0000
LEO000
£T000°0
T10000

0000070
000000
0000070
0000070
0000070
00000°0
0000070
+0000°0
00000
¥0000°0
€00000
10000°0
000000
€9100°0
9910070
§9100°0
0110070
€S000°0

000000
00000
00000
T0000'0
1000070
100000

00000°0
LEODDO
L0000
LEO0O'0
ST000°0
<1000°0
00000
PELOD'O
TrLO00
8€L0D°0
16¥00°0
892000

00000°0
LEODD'0
LEO0D"0
LEODDO
€T000°0
10000
00000°0
6FE00°0
ISE00°0
0££00°0
££200°0
L1100°0

8L000°0
TITE0'0
96TE0'0
£€TEO0
991200
o

Z0000°0
YELODD
rLo00
8ELO00
16¥00°0
8¥Z00°0

8L000°0
CITE0'0
962£0°0
€6TE00
991200
1110

SEVTO0
CEVETD
soTvio
008E1°0
¥8760°0
6L6V0°0

SEYTO0
CEVETO
cozvl'o
008E1°0
82600
6L6¥0°0

9£01°0
0££9T°0
YOP8T°0
¥6CLTO
8TLRI'O
001’0

0FSEE’0
£9E87°0
PIIESTO
S0905°0
81+9€°0
E1ETTO

dq

'n
™0
L
LY |

'n
'n
7
Lif §
a7
n
n
T
£

SLO

0s'0



124 W. Gaul

References

[1] R. E. Barlow and F. Proschan, Availability theory for multicomponent systems, in:
P. R. Krishnaiah, ed., Multivariate Analysis III (Academic Press, New York, 1973)
319-335.

[2] R. E. Barlow and F. Proschan, Statistische Theorie der Zuverliissigkeit (Verlag Harry
Deutsch, Frankfurt/Main, 1978).

[3] R. E. Barlow and A. S. Wu, Coherent systems with multistate components, Math.
Oper, Research 3 (1978) 275-281.

[4] L. D. Bodin, Approximations to systems reliability using a modular decomposition,
Technometrics 12 (1970) 335-344,

[5] R. W. Butterworth, A set theoretic treatment of coherent systems, STAM J. Appl.
Math. 22 (1972) 590-598.

[6] H. J. Cleef and W. Gaul, A stochastic flow problem, J. Information & Optimization
Sc. 1 (1980) 229-270.

[7] H. 1. Cleef and W, Gaul, Project scheduling via stochastic programming, Mathem.
Operationsf. & Statistik, Ser. Optimization 13 (1982) 449-468.

[8] E. El-Neweihi and F. Proschan, Multistate reliability models; A survey, in: P, R. Krish-
naiah, ed., Multivariate 'Amalysis V (North-Holland Publishing Company, 1980)
523-541.

[9] E. El-Neweihi, F. Proschan and J. Sethuraman, Multistate coherent systems, J. Appl.
Probability 15 (1978) 675-688.

[10] J. D. Esary and A. W. Marshall, System structure and the existence of a system life,
Technometrics 6 (1964) 459-462.

[11] J. D. Esary and F. Proschan, Coherent structures of nonidentical components, Techno-
metrics 5 (1963) 191-209.

[12] J. D. Esary and F. Proschan, A reliability bound for systems of maintained interdependent
components, J. Amer. Statist. Association 65 (1970) 329-338.

[13] J. D. Esary, F. Proschan and D, W. Walkup, Association of random variables, with
applications, Ann. Math. Statistics 38 (1967) 1466-1474.

[14] O. Frank and W. Gaul, On reliability in stochastic graphs, Networks 12 (1982) 119-126.

[15] K. W. Gaede, Zuverlissigkeit, Mathematische Modelle (Verlag Karl Hanser, Miinchen,
1977).

[16] W. Gaul, Some structural properties of project digraphs, J. Combinat., Infor. & System
Sc. 3 (1978) 217-222,

[17] W. Gaul, Stochastische Aspckte bei anwendungsrelevanten Graphenproblemen,
Habilitationsschrift (Universitidt Bonn, 1980).

[18] W. Gaul and J. Hartung, Multistate reliability problems for gsp-digraphs, Lecture
Notes in Economics and Mathematical Systems 240 (1985) 41-53.

[19] F. Harary, F. Z. Norman and D. Cartwright, Structural Models: An Introduction
to the Theory of Directed Graphs (John Wiley & Sons, New York, 1965).

[20] K. Jogdeo, Association and probability inequalities, Ann. Statistics 5 (1977) 495-504.



