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In this paper two classes of probabilistic ideal point, respectively
probabilistic vector, models are described and compared which - in
different ways - account for the probabilistic nature of paired
comparisons based choice behaviour. The main difference between both
classes can be characterized in terms of the probabilistic utility
specifications used. Whereas in the first class probabilistic ideal
points or probabilistic vectors account for inconsistencies in the
paired comparisons data, in the second class deterministic utility
values yielded from non-probabilistic ideal points or vectors are
superinposed by random error. A comparison is performed on the basis
of theoretical aspects as well as empirical results.

1. INTRODUCTION

Inconsistencies in observed choice behaviour data have been a central motiva-
tion for researchers to develop probabilistic choice models. Especially, in
paired comparisons data, intransitivities or circular triads may occur and a
variety cf approaches has been proposed, which try to mode]l these inconsist-
encies. A review of these techniques based on criteria such as internal versus
external analyses of pairwise choice data, unidimensional versus multidimen-
signal representations, ideal point versus vector approaches etc., is given in
?.g. ?ﬁckenholt/Gau] (1984, 1986), Bradley (1984) or De Sarbo/De Soete/Jedidi
1987) .

In this paper we restrict our discussion to recently proposed, multidimensional
scaling techniques, which - in different ways - account for the probabilistic
rature of paired comparisons based choice behaviour. Essentially, two different
classes of probabilistic ideal point models (PIPM), respectively probabilistic
vector models (PVM), are described and compared the main difference of which
can be explained in terms of different probabilistic utility specifications. In
all cases, utility is described either by the distance between objects and
ideal points (which is inversely related to utility) or by the projection of
objects on preference vectors.

In the first class probabilistic ideal points, respectively probabilistic vec-
tors, account for inconsistencies. The corresponding PVM is due to Carroll
(1980) and De Soete/Carroll (1983) whereas the PIPM was independently developed
| by Bickenholt/Gaul (1986) and De Soete/Carroll/De Sarbo (1986).

‘ Recently, De Sarbo/De Scete/Jedidi (1987) (and De Sarbo/0liver/De Soete (1986))
. have proposed a second class of multidimensional probabilistic choice models.
| The authors' approach is restricted to analyzing binary paired comparisons data

and is based on a probabilistic choice theory similar to Thurstone's LCJ (Law

‘ *J Research has been supported by the Deutsche Forschungsgemeinschaft.
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of Comparative Judgement) Case V. More specifically, deterministic utility
values yielded from non-probabilistic ideal points or preference vectors are
superimposed by random error.

In this paper two aims are pursued. First of all - concerning more theoretical
aspects - both classes of choice models are amalgamated into a unified proba-
bilistic setting, in which the De Sarbo/De Soete/Jedidi/Oliver-approach is a
special case. Hereafter - concerning more empirical aspects - both classes are
compared in terms of empirical results yielded from the analysis of a data set
known from previous research in choice theory.

2. PROBABILISTIC MULTIDIMENSIONAL SCALING

Since the landmark paper by Thurstone (1927) on unidimensional scaling of
paired comparisons data, important progress has been made in probabilistic
choice theory by developing models, which take into account the often multi-
dimensional nature of choice objects. Researchers are especially interested in
approaches, which allow for a subject-specific representation of choice behav-
jour, and it has become a common practice to realize such representations of
judging subjects in terms of ideal points (see e.g. Bennett/Hays (1960),
Carroll (1980), Coombs (1964), Schinemann (1970), Sixtl (1973), Zinnes/Griggs
(1974)) or preference vectors (see e.g. Carroll (1980), Slater (1960), Tucker
(1960)). The methodology presented below assumes the following relationship
between ideal points, respectively preference vectors, and objects:

s = 1,...,5 subjects (or homogeneous groups of subjects; e.g. consumers), 1 =
1,...,L objects (e.g. brands, print ads, package designs etc.) and m = 1,...,M
space dimensions are used for describing choice objects and judging subjects in

an appropriate joint space. Ideal point coordinates i: = (isl,...,iSM). respec-
tively vector coordinates vl = (Vsl""'st)' may be superimposed by random er-
ror, i.e. subject s in dimension m is described by

e +% .
Tem ¥ € OF Ve - with (1)

G N(O, Asm)’ cov (e

-
SLI L

while object coordinates x{ = (x11""'”1M) are deterministic (Here, T denotes
transpose of a vector.).

We define a random weighted squared Euclidean distance between objects and
ideal points by

; M
T = (s
Ug = mzl Wem (X = Uspend)® * vgp 5 W > 0 (2a)
respectively a random scalar product between objects and preference vectors by

M
v =
Us] Zl x]m(v5m+esm) * Y512 (2b)
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where
v ~ N(O,o ) cov(y s ¥ ) =0, (3)
sl R gt 5111 Splp

describes additional random error not accounted for by the chosen dimensional-
ity with

cov(y511, Eszm) = 0. (4)
Remember, that an ideal point 1S allows the identification of a most preferred

perceptual space location of subject s for existing and/or new choice alterna-
tives (e.g. products, package designs, print ad concepts etc.) under study,
whereas a preference vector v, indicates subjects's most preferred preference

direction. The random error e.. is directly related to the coordinates of a
deterministic ideal point 15, respectively preference vector v, to account for
within - subject inconsistencies (and across - subject inconsistencies when
several subjects are considered to be replications of each other).

The error term y4 is introduced in & similar way as has been done by Thur-

store (1927), McFadden (1976) and De Sarbo et al. (1986, 1987) to consider a
variability within the data not accounted for by the dimensionality M of the
joint space chosen.

Suppose a subject s s presented @ pair of objects j.k, then object
will be preferred to k whenever
i i
Usk - Usj g8 (5a)
or v v (2h)
Ugj = Usk * 0

holds. With regard to the model assumptions (1), (2a,b), (3) and (4) the
prebability that the inequalities (5a), respectively (5b) are valid is given by

rd
; i i mzlwsm [z(xjm-ka}ism+(x§m_x§m)]
i PrUg)- Ugs>0) = & S = SV (6a)
( 4m%1wsmksm(xjm'ka) +2us)
Psik <1 r; ( )
! %o =Xy )V
‘ v v i mel dm km’ " sm
PP(USJ- U5k>0) = of 72 ) (6b)

M
(4mzlA§m(xjm'ka]z+2°§)

where ¢ denotes the standard normal distribution function.

The parameters tc be estimated in (6a,b) are the cecrdinates of the subjects’
ideal points ism’ respectively preference vectors v .., the coordinates of the

cbjects' points Xm? the weighting factors Wen and the random error variances

2

2
Asm® Os*
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An extension of the above mentioned model equation via graded paired compari-
sons or via a reparametrization of the object, respectively subject, coordi-
nates is straightforward and skipped here because of space Timitations. Maximum
likelihood parameter estimaticn procedures for special cases of equation (6a,b)
along with several test statistics can be found in e.g. Arbuckle/Nugent (1973),
Bickenholt/Gaul (1986), De Soete/Carroll/De Sarbo (1986), De Soete/Carroll
(1983) and De Sarbo et al. (1986, 1987).

3. SPECIAL CASES

Various special cases derived from the methodology presented above can be
cbtained by assuming appropriate constraints with respect to the distribution
assumptions (1) and/or (3). Here, we restrict ourselves to the two classes men-
tioned in the beginning of this paper. Therefore, it should, again, be stressed
that for all approaches of the first class at least some kind of distribution
assumption (1) is valid, while approaches of the second class can be described
by distribution assumption (3) without consideration of (1), i.e. Ry~ 0 (or

2
N - 0).

Concerning the first class, we receive the PIPM presented in BUckenholt/Gaul
(1986), respectively the PYM described in De Svete/Carroll (1983), by fixing
A;m =1, ¥s, m and °§ = o2, ¥ s, while in the PIPM proposed by De Soete/

Carroll/De Sarbo (1986) distribution assumption (1) but not (3) is used.
Disregarding distribution assumption (3) simply means v, =0 (or ol » 0) i.e.

the term 2 °§ in the denominator of (6a,b) has to be cancelied. An important

characteristic of all approaches based on distribution assumption (1) is, that
choice probability is not only a function of the difference in utility of the
choice objects but also a function of the similarity or comparability between
choice objects. This characteristic is apparent from (6a,b) and dimplies
moderate stochastic transitivity, as has been proved in Halff (1976).

Using distribution assumption (3) and disregarding (1), i.e. omitting the
random error term o (or Agm + 0), we receive - together with the correspond-

ing modified expressions (2a,b) and (6a,b) - the second class of approaches
proposed by De Sarbo et al. (1986, 1987). Similar as Thurstone's (1927) LCJ
Case V these approaches imply strong stochastic transitivity and don't account
for similarity between choice alternatives. Mathematically, the terms

M M
2 2 - 2 1 2 = 2 i
4 mzlwsm A (”jm X! 2 respectively 4 mzl Asm(xjm X! 2+ in the denominator

of (6a,b) have to be cancelled. This means that the probability of choosing a
choice object j from two alternatives (j,k) is modeled as a strictly increasing
function of the difference in subjective utility of the choice objects j and k.

The question, however, is whether such a restriction is really necessary. No-
tice, that the x]m-coordfnates in the denominator terms have to be estimated

anyhow. Under the assumption of equal weights (i.e. P 1, ¥ s,m), also used
in De Sarbo/De Soete/Jedidi (1987), the Asm-parameters are the additional un=-

known guantities which have to be specified or estimated. Although the discus-
sion of whether these parameters can be estimated within the used approach is
not finished yet, one possibility is, of course, to specify these parameters,

e.g. Asm =1¥s,m Empirical implications yielded by this simple choice of

the corresponding variance parameters will be illustrated in the next section.
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4, EMPIRICAL RESULTS

A first empirical comparison of the two classes of PIPM, respectively PVM, was
made on the basis of the Rummelhart/Greeno (1971) data, a well-known example
from previous research in choice theory. In this study, 234 college students
judgea three groups of celebrities with respect to the question "With whom
would you prefer to spend an hour of conversation?". The first group consisted
of three politicians (Harold Wilson (HW), Charles De Gaulle (CD? and Lyndon B.
Johnson (LJ)), the second group of three athletes (Johnny Unitas (JU), Carl
Yastrzemski (CY) and A.J. Foyt (AF)) and the third group of three movie stars
(Brigitte Bardot (BB), Elizabeth Taylor (ET) and Sophia Loren (SL)). Subjects
were treated as replications within one group, so that S = 1 holds.

This data set is well suited to demonstrate to which extent a scaling technique
is able to discover the perceived similarity of different choice objects,
because it can be expected (and has been found out in a number of analyses; see
e.g. Bockenholt/Gaul (1986), De Soete/Carroll/De Sarbo (1986) or Takane
(1980)) that people belonging to the same professional group are more similar
to each other than those in different groups.

Tab. 1 contains selected analyses of these data. The test values of Thurstone's
unidimensional LCJ Case V model as well as the twodimensional PIPM, respec-
tively PVM, approaches tased on distribution assumption (3) with disregard of
distributicr assumption (1) indicate that these models have to be rejected. On
the other side, the twodimensicnal PLPM, respectively PVM, approaches based on
distributicr. assumption (1) with disregard of distribution assumption (3} lead
to a significant fit improvement.

Model speclfication Test against null model
Dimension- | Distrib. log L Effective no. | X* d. f. p-value ALC
ality assumpt. of parameters (~10000)!
ull model - - -5310.65 36 = - - 693.30
ILCJ Case V & - -5351.76 | 8 82,22 28 <0,001 719,52
+
Probabilistic 2 (1) -5315,69 | 16 10.08 20 0.967 663.38
tdeal point model a\m-wl,m 1
um-l, Vi, m i
2 (3) -5351.74 | 17 82,18 19 <0,00L 737,48
|
|
2 (1)+(3) |-5315.38 | 17 9.46 19 0,965 664.76
A =
1m 1¥1,m
Probablilistic 2 (1) -5317,68 16 14,06 20 0.827 667,36
vector model A =1vl,m
1m
2 (3) =5351. 7% 14 82,18 22 <0.001 731,48
2 V1)+(3) |-5317.61 17 13.92 | 19 0.834 669,22
A, =1Vl,m
1m

Tab. 1: Summary of selected analyses on the Rummelhart/Greenc (1971) data
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. expected
geal point

Fig, 1: Twodimensional solution of the
Rummelhart/Greeno data according to the
probabilistic ideal point model with dis-
tribution assumption (1) with Alm =1V1,m

Fig. 2: Twodimensional solution of the

Rummelhart/Creeno data according to the
probabilistic vector model with distri-
bution assumption (1) with llm =1V1,m

Fig. 3: Twodimensional solution of the
Rummelhart/Greeno data according to the
probabilistic ideal point model with
distribution assumption (3)

Fig. &4: Twodimensional solution of the
Rummelhart/Creenc data according to the
probabilistic vector model with distri-
burion assumption (3)

V
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This result is in so far remarkable as both distributions - for the different
PIPM as well as for the PVM approaches - imply only slight differences with
respect to the number of effective parameters which have to be estimated (see
column 5 in Tab. 1). A simultaneous application of both distributions as well
as the consideration of more than two dimensions (these results are not pres-
ented in Tab. 1 out of space limitations) lead to no significant fit improve-
ments. Akaike's (1977) AIC - statistic indicates (the smaller the AIC, the
better the model fits the data), that the two-dimensional PIPM based on distri-
bution assumption (1) is most appropriate for representing the data.

Further hints which support the results of Tab. 1 are yielded by the two-
dimensional graphical representations depicted in Fig. 1 to 4

While there are only slight differences concerning the preference rank orders
yielded from the different approaches (see Tab. 2), already a short glance at
the figures shown reveals that the probabilistic choice models derived from
distribution assumption (1) provide a more distinct cluster solution of the
choice objects (see Fig. 1 and 2) than the probabilistic choice models based on
distribution assumption (3) (see Fig. 3 and 4), In Fig. 1 and 2 each profes-
sional group forms a separate cluster (as expected), while not the same can be
stated for Fig. 3 and 4. Therefore, one may conclude, that the first class of
probabilistic choice models seems to be more appropriate in discovering the
perceived similarity of different choice objects, at least for the S=1 group
case.

Ideal point model Fig. 1 1 2 9 3 8 6 4 v L |
Vector model Fig. 2 1 2 9 3 8 6 [ 7S
ldeal point model Fig., 3 1 9 2 8 3 6 4 7 5
Vector model Fig. & L 9 2 B 3 6 4 7 8

Tab. 2: Rank orders yielded by the two-dimensional solutions depicted in
Fig. 1 to 4

5. CONCLUSIONS

After having amalgamated two classes of choice models into a unified probabil-
istic setting and after having discussed theoretical aspects of various special
cases, an empirical comparison of both classes was conducted. Although the
results - concluded from the analysis of a data set well known from previous
research in choice theory - indicate some important features for the special
case S = 1, further research efforts on the basis of individual data have to be
performed to allow a more comprehensive comparison of both classes. For exam-
ple, it would be desirable to examine the performance of the different ap-
proaches on data sets with S(*>1) groups of subjects (with replications within
groups) or on data sets which are handled on an indjvidual basis (with and
without replications).
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