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SUMMARY

In this paper we handle the general problem of finding g(> 1) central relations on a set of objects which
best fit the information contained in a finite number of given relations on that set. The proposed CAR
(clusterwise aggregation of relations) algorithm allows one to consider the well-known situation of
determining a single central relation as a special case (¢ = 1) and takes into account the fact that the
representation of appropriately selected subsets of relations by different central relations can provide
additional insights into whether different clusters or segments of relations exist in the given set of
relations. Two examples demonstrate the usefulness of the suggested approach.
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INTRODUCTION

A familiar problem in data analysis and social choice theory is that of aggregating information
contained in a finite number of relations on a set of objects into a single cenfral relation on
that set (see References 1 and 2 and the literature discussed there).

In order to find such a single central relation the usual approach is to define an appropriate
distance on the set of (binary) relations on the set of objects—or a subset thereof—and to
minimize the sum of distances between the given relations and the single central relation one
is looking for. Depending on the type of result desired, this minimization has to be carried out
with respect to certain constraints, e.g. the single central relation wanted has to fulfil conditions
such as reflexivity, transitivity, symmetry and the like. For algorithmic aspects dealing with
these problems the reader is referred to References 1-8; recent applications may be found in
References 9—13.

In this paper we handle the more general problem of finding g(> 1) central relations which
best fit the information.contained in a finite number of given relations. The proposed CAR
(clusterwise aggregation of relations) algorithm allows one to consider the above-mentioned
situation of determining a single central relation as a special case (g = 1) and takes into account
the fact that the representation of appropriately selected subsets of relations by different central
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relations can provide additional insights as to whether different clusters or segments of relations
exist in the given set of relations.

The next section gives an introduction into the problem of fitting g central relations to a given
number of p relations and describes the CAR algorithm. The third section gives two examples
which demonstrate the usefulness of the suggested approach. Finally, some concluding remarks
are given.

A MODEL FOR CLUSTERWISE AGGREGATION OF RELATIONS

Let 7={1,...,n} be the set of objects under consideration, and denote by R, ..., R, the given
relations on / where M = (1, ..., p} describes the related index set. Different situations can be
handled within this framework.

If M is a set of judging subjects then Ry, ..., R, could be individual relations which result
from a paired comparisons experiment with respect to the elements of 1.

Another possibility would be that Ry, ..., R, are obtained from complete orders or preorders
—rankings, so to speak—on the elements of f.

On the other hand R\, ..., R, might be derived from a mixed data matrix

A= (aim)ictmem

where @y, is the value of variable m on object /. Here M denotes a set of variables used to
describe the elements of /. In this case the relations Ry, ..., R, are usually defined by

iRmj® @im= am for a nominal variable m } Giel
iRyj® aim < a;y for an ordinal or a cardinal variable m e
where Ry, is an equivalence relation or a complete preorder on /.

Once relations have been established the next task is to compute a suitable distance function
which assigns appropriate (dis)similarity values to pairs of relations. Different possibilities are
known, e.g., one can define the graph of relation R by Gr:= {((i,/):i, j€ I and iRj} and—
for two relations R,S—use the well-known distance function d(R,S)= |GgrU Gs|
— | GrN Gs| (see References 14 or 15, for instance, for other distance functions).

In order to find a central relation S on 7 defining a classification (which implies that S is an
equivalence relation) or a ranking (which implies that S is a complete order or preorder relation)
of the objects the conventional approach is to compute the distance d and to minimize the sum
2 -1 d(Rin, S) under the constraints ensuring that S is of desired type.

Although obtaining exactly one resulting relation S may be imperative in some applications
(e.g. in voting procedures) we feel that—in order to obtain a more profound description of
the data—it will make sense to follow the suggestion of Lemaire'® and to divide the set
M=[1,..., p} into g clusters M, ..., My.

We therefore minimize the objective function

i Z d(Rm, §j) (1)
=1 meM,
subject to the constraints that [ M, ..., My is a partition of M and S, ..., S, are relations (on
I) of some specified type(s). (An approach related to this problem which uses a least-squares
deviation criterion in order to decompose a given similarity matrix into binary matrices, is
described by Mirkin;'” we also refer to the ‘likelihood of links’ method outlined by Lerman '*
which allows the hierarchical classification of descriptive variables or relations.)



CLUSTERWISE AGGREGATION OF RELATIONS 275

Even for moderate numbers n, p and ¢ minimization of (1) under the given restrictions is
a discrete and combinatorial problem, the solution of which will not be possible in closed form,
and, since in this context the relations S; take on the role of cluster centers, we suggest the
following CAR (clusterwise aggregation of relations) algorithm:

Set r=0.
Choose fmax > 0 and a starting partition [ M{?, ..., M{”}.
Repeat

Calculate the corresponding central relations Sf', ..., 85" according to

>, dRm,S")=min 2, d(Rm,S)
me Mf" s meM’

Calculate a minimal distance partition [M{™*", ..., M§*P} using

me MV s d(Run,Sf”)=min(d(Rm, SE":k=1,...,q}. If this

minimum is not unique take j to be the smallest k£ for which it is

attained. Set r=171+1.

until no more changes occur Or > Imax.

The resulting partition is called an end partition. 1t is easy to see that during the iteration a
monotonic reduction of the objective function in (1) is achieved. The end partition and the
central relations, however, need not establish an optimal solution of (1). Furthermore, during
the second iterative step one or more empty classes M+ may be generated. These will remain
empty until the end of the iterative process so that the end partition may have less than g
classes. It should also be pointed out that the classical problem of minimizing Zm d(Rim, S)
must be solved ¢ times during each performance of the first iterative step.

Obviously, the CAR algorithm belongs to the family of wandering centroids—or nuées
dynamiques—methods which were stimulated among others by Sebestyen, 19 Régnier,*
Gower?! and Diday.? Its computational expenditure is dependent on the algorithm used to
determine the solution of the min{Z, d(Rm, S):S) problems. Various types of algorithms,
such as branch and bound, cutting plane, dynamic programming or subgradient methods, and
even powerful heuristics are available (see the references in the introduction).

Let us finally remark that, instead of tackling problem (1)—minimizing distances—it would
be equally reasonable to maximize the association between relations (see Reference 23 for
criteria of this type).

EXAMPLES

Two data sets known from previous research efforts to analyse structures on sets of objects are
used for the illustration of the CAR algorithm.

An application to paired comparisons data

The first example is concerned with evaluations of what makes an advertising message for
print ads of products a successful one.2* A total of p= 69 persons participating in courses of
continued education at the Chamber of Industry and Commerce of Karlsruhe and students of
an introductory course of marketing at the University of Karlsruhe took part in the study. The
main part of the survey consisted of a paired comparisons experiment of ten cognac print ads
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in which pairs of ads were shown to participants for three seconds each. The participants were
asked to select that print ad which—according to the question ‘Which of the two ads is more
appealing to you'—was preferable. For each participant his/her individual paired comparisons
matrix was recorded.

Here, M= [1,...,69) is the set of participants and /= [1,...,10} is the set of print ads.
Each paired comparisons matrix determines a relation on /. The relations Ry, ..., Ry are given
in Table 1. The columns in this table are numbered according to the pairs of elements
(1,2),(1,3),...,(1,10),(2,3), 2,4), ..., (2,10),(3,4),(3,5), ..., 3, 10), ..., (9, 10); a 1 in row m
and column (i, ) indicates that participant m has preferred ad i to ad /.

For a better understanding of the grand matrix in Table I we represent R, the preferences
of participant 1, in Table I1. In this 10 x 10 matrix a 1 in row / and column j indicates that
ad i was preferred to ad j.

Of course, an interesting question is whether different clusters within the sample of 69
respondents react in different ways to the advertising exposures. To obtain an answer we
applied the CAR algorithm where we used the subgradient-method (O) described by Schader
and Tiishaus?’ to solve the min {Xm d(Rwm, S):S] problems. The best values of the objective

function (1) subject to the condition that S, ..., S; are complete orders are given in Table 111
for g =1, ...,6. The results were obtained using 1000 random starting partitions for each value
of q.

The greatest improvement was reached for the segmentation of the sample set M into two
classes. After a partition into four classes only minor changes—compared to the first
improvements—of the objective function follow. Additionally, for marketing reasons a split
into too many classes would cause problems in handling separate advertising campaigns for all
the different target audiences. From the two-class solution we obtained M, = | 1;:3; 5 O;
9,...,13,17,19, 22, 24,25,27,31,...,34, 36, ..., 39,42, ..., 45,47, 52, ..., 59, 63, 64, 66, ..., 691,
M= M — M, and the complete orders

51:5<10<3<8<1<7<6<4<2<9
$::9<4<5<1<10<3<8<T<6<2

Keeping the obtained partition { M,, M2} of M fixed, these orders are optimal with respect to
(1). Optimality can be proved by controlling the gap between the objective function values
of the primal and dual problems corresponding to min (X, d(Rn, S):S] as is proposed in
References 5 and 6.

Figure 1 gives the results of this two-segment case in terms of a probabilistic ideal point
model representation (see Reference 24 for a detailed description).

Table I1. The preferences of participant 1
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Table I11. Best values of the objective function

q 1 2 3 4 5 6

a
2 20 RSN 2266 1830 1640 1496 1414 1348
J=1meM,

Again, one can see that there is a clear distinction relative to the preference orderings of the
two subgroups M, and M where in a (probabilistic) ideal point model orderings are expressed
by the distances of the different print ads from the (expected) ideal points 71 and 2. (A
mathematical description of the probabilistic ideal point model and comparisons to other
models for evaluating paired comparisons data is given in Reference 26. In our context,
Figure 1 is inserted to indicate that on the basis of the CAR results M,, M- other techniques
can be applied, the results of which can be compared to the optimal central relations S, and
S of the CAR approach.)

An application to ordinal data

This second example analyses data describing the management organization in business firms
having headquarters and several subordinate bodies (classified, for instance, according to
regions or products). A total of n= 36 top-level managers were asked to report on p=37
statements intended to describe the headquarters’ business interactions with its subdivisions
(s.d.s). The data of this survey, first communicated by Gabele and Niemeyer?” have been
studied by Dobbener* and Schader and Tiishaus>* among others. Here, M = 1, ...,37] is the
set of statements and /= (1, ...,36] is the set of managers. Some examples of statements to
be answered by the managers are:

We decide on manpower requirements and personnel disposition in the s.d.s.
We determine prices, delivery and payment conditions for the s.d.s.

Figure 1. Graphical representation of probabilistic ideal points results
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We project marketing mix and advertising strategy of the s.d.s.
We co-ordinate hiring and dismissal of executive personnel with the s.d.s.

For each of these statements the manager had to decide if it is ‘absolutely incorrect’, ‘true to
a minimum degree’, ..., or ‘absolutely correct’ in reference to his organization. The data matrix
is given in Table IV. Here, we encoded the seven possible answers by 1,2,...,7 or 7,6, ..., I,
respectively, so that small numbers indicate that responsibility is delegated to the s.d.s.,
whereas higher numbers show that planning decisions are passed in the headquarters.

In this case Ry, ..., R37 are complete preorders on /= {1,...,36]. Using the same distance
function d as in the previous example and searching for central complete preorders we obtained
the following result for ¢ = 2 classes:

M, =1(1,2,...,8,9,12,13,...,29,30] and M,=1[10,11,31,32,...,37}

are the subsets of statements which best could be represented by two complete preorders. It is
easily possible to find reasons for this partition when considering the type of the corresponding
statements. Whereas all the statements numbered 1, ..., 30 are of the type ‘We decide...”, “We
determine...", ‘We project ..., statements 31, ..., 37 refer to an existing co-operation between
headquarters and s.d.s., e.g.

Table IV. The data matrix A

128... . 37
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31. The marketing strategy for the s.d.s. is determined in co-operation with the s.d.s,

32. We co-ordinate hiring and dismissal of executive personnel with the s.d.s.

33. We arrange the assignment of new projects to our s.d.s. together with the s.d.s.

34. Differences between s.d.s. are settled in joint meetings in the headquarters.

35. Costing and accounting axioms for the s.d.s. are determined in co-operation with the
s.d.s.

36. Our overall budget is planned together with the s.d.s.

37. Apportionment of our general expenses is co-ordinated with the s.d.s,

Associated with the cluster M, is the complete preorder §,: C, < C; < C3 < Cs < Cs with the
classes C=[4,10,11,13,15,19,27,32}, C;=(1,2,5, 6,8,9,12, 16, 20, 21, 24, 25, 29, 30, 31,
33,34,35},C3=(14),Cy = {26) and Cs= [3,7,17, 18,22, 23, 28, 361.

In Figure 2 we-plotted the median of the judgements of the statements in M, given by the
members of the classes Cy, C; and C; U Gy U Cs, respectively (the single-element classes Cy and
C; were united with Cs for reasons of clarity).

We see that the classes are ordered according to increasing dependence of the s.d.s. on the
firm’s headquarters — there is only one variable with an inversion of this ordering.

A similar picture is given by the complete preorder S, for the cluster M,. §; is defined by
Ci<Ci<Ci<Ci<Ciwith C{=(1,7,13, 17,22, 23, 25, 26, 28, 30, 35, 36}, Ci = {5, 14, 18,
19,24,32,33}, Ci=(2,3,6,8, 10,11, 12, 15, 16, 20,21,27,29,31,34),Ci= (4} and Ci= [9}.

Again we plotted the median of C{, Cj and C§ U C} U C¢. The results are shown in Figure 3.
It should be noted that—as in the first example—S, and S; are optimal with respect to (1)
and that we solved the min(Z,, (R, S): S | problems using the subgradient method (P) from
Reference 6.

To give a short résumé: our results indicate that—according to managers’ information—
those firms which have a rigid management are also characterized by intensive consultation and
co-operation with their subdivisions.

7

1 1 | 1 1 1 1 1 I 1 1 | L I 1
t T t

I234SE759t?lJH1515l?161920212225?4252627282930

Figure 2. The median answers to the statements in Mi: ———— the firms in Cy; === the firms in Cs;
——————— the firms in C;U C; U Cs
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1o 11 31 32 33 34 35 36 37
Figure 3. The median answers to the statements in M,

CONCLUSION

On the basis of a given set of relations collected to provide information about an interesting
set of objects the described CAR algorithm allows additional insights concerning the degree of
homogeneity of the given data. Comparisons of the improvements of the objective function—
obtained if the number of classes (of the set of given relations) is increased—allow the
assessment of the number of central relations required to profoundly describe the essential
information provided.
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