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Marketing data analysis by dual scaling *

Shizuhiko NISHISATO
Wolfgang GAUL

A survey of various aspects of dual scaling and an assess-
ment of variants of this method with respect to its ability to
handle marketing data are presented. The paper looks at dual
scaling as a distinct method among those techniques based on
the same principle, in particular, as correspondence analysis,
for quantifying qualitative data from marketing research.

Data from advertising research are used to illustrate the
potentials of dual scaling and some of its important character-
istics.

The paper is intended to serve as a useful guide for applica-
tions of dual scaling to problems in marketing research.

1. Introduction

1.1. Historical background

In 1860, Gustav Fechner published his
classical work, entitled ‘Elemente der Psycho-
physik’. Since then, quantification of human
judgement has been an important topic in the
social sciences, particularly in psychology. It
was not until 1927, however, that a statistical
foundation for ‘scaling’ was established by
Leon L. Thurstone in his famous article on
the law of comparative judgement (Thurstone
(1927)). This paper marked the beginning of
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the unidimensional approach to gquantifica-
tion of human judgement.

In 1901, Karl Pearson published an epoch-
making article on linear combinations of vari-
ables as defined in the principal plane (Pear-
son (1901)). His basic ideas and formulation
were then developed into ‘principal compo-
nent analysis’ by Harold Hotelling in his 1933
paper. This study made it possible to repre-
sent data in multidimensional space and,
hence, may be regarded as a marker of the
beginning of the multidimensional approach
to quantification of human judgement.

With these two distinct streams of major
precursors, numerous methods for analyzing
human judgement have been proposed during
the past several decades. Especially, during
the past 55 years or so, a number of so-called
‘quantification methods’ have been developed
(see e.g. the bibliography of Nishisato (1986)
and the assessement of different methods for
quantifying categorical multivariate data by
Tenenhaus and Young (1985)). Although these
techniques as referred to by such names as
correspondence analysis, homogeneity analy-
sis and dual scaling have a common ground
or starting point — i.e., the singular-value or
Eckart-Young decomposition — research has
passed the stage of ‘basic formulation’, mov-
ing into the phase of own advancements. This
phenomenon of branching out is likely to
continue, and it is possible that we may see
the day when dual scaling, for example, can
no longer be used as synonymous as corre-
spondence analysis (see e.g. Nishisato (1978)
who showed that his formulation of dual scal-
ing of paired comparisons is an alternative to
formulations proposed by Guttman (1946),
Slater (1960), Tucker (1960) and Carroll
(1972) some of which are referred to as vector
models, and Bockenholt and Gaul (1986,
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1987) for probabilistic generalizations and
comparisons of vector and ideal point mod-
els).

At the present stage of development, dual
scaling is ready to be used for the analysis of
various kinds of qualitative data. (Dual
scaling, as applied to contingency tables, sort-
ing data and multiple-choice data, is nothing
but principal component analysis of cat-
egorial data; dual scaling, as applied to paired
comparisons, ranking and successive cat-
egories data, employs some ideas of Thursto-
nian scaling methods.) A main orientation of
research on dual scaling has been and still is
to extend applicability of the method to a
wider variety of qualitative data, using the
so-called dual relations or duality. As is well
known, correspondence analysis is not appli-
cable to a data table which contains negative
numbers. One of the distinct aspects of dual
scaling, however, lies in its extension to a data
table which contains negative numbers. This
will be discussed later in more detail.

One of the most useful variants of dual
scaling is that of forced classification. This is
an analogue of discriminant analysis for mul-
tiple-choice, paired comparisons, ranking and
sorting data, a very simple, yet effective pro-
cedure, which can easily be incorporated into
a computer program. Its generalized version
offers a variety of procedures for market seg-
mentation, conditional analysis and robust
quantification.

Within a marketing context the present
study reviews and explains in a clear and
integral way some developments in dual
scaling published mainly by Nishisato and his
associates. Main reasons for this exposition
are first, the fact that dual scaling is not well
known in marketing research, and second, the
conviction that dual scaling has far-reaching
potential for elucidating complex judgemental
data. Up to now, only a few expository papers
on essentially the same background method-
ology as for dual scaling have appeared in the
marketing research literature. The phrase ‘es-

sentially the same’ has important implications
for the following discussion, and will be
clarified shortly.

1.2. Marketing studies related to dual scaling

From the previous section, it may be clear
that there are some methods which are related
to, but not the same as, dual scaling. In a
bibliography on quantification of categorial
data covering the time span 1975-1986
(Nishisato (1986)), one can find some pub-
lications of this general quantification method
as applied to marketing research. To name
only a few examples, see Carroll, Green and
Schaffer (1986), Franke (1983, 1985), Gopa-
lan (1986), Hoffman and Franke (1986), Krier

“and Jackson (1984), Vasserot (1976), and

Weingarden and Nishisato (1986). Out of
these articles, widely cited papers by Franke
(1985) and Hoffman and Franke (1986) are
expository of existing methods. For a thor-
ough discussion of the general methodology
of correspondence analysis and dual scaling,
therefore, one should refer to Benzecri et al.
(1973), Greenacre (1984), Lebart, Morineau
and Warwick (1984), and Nishisato (1980).

It seems that dual scaling and its competi-
tors are no longer what Hill (1974) called the
neglected multivariate methods but are recog-
nized to be of special interest to investigators
in marketing research. Considering the com-
plexity of marketing data and the fact that
techniques which are geared to multidimen-
sional analyses of qualitative data are needed,
dual scaling can serve as one of the versatile
alternatives in data analysis.

In the next section the basic formulation of
the method will be given. Then, data from
advertising research will be used to illustrate
the potentials of dual scaling and some of its
important characteristics.

Additionally, sample calculations are pro-
vided in an appendix to explain how dual
scaling is able to handle different types of
data and may serve as a useful guide for
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applications of dual scaling to problems in
marketing research.

2. Basic formulation

The term ‘dual scaling’ was proposed by
Nishisato because of its generality and lack of
ambiguity for a method originally designed to
quantify qualitative data by assigning optimal
weights to the rows and columns of a data
matrix. To describe the basic formulation let
us introduce the following notation:

F =(f,;)=an nXm data matrix, f;, being
the frequency in cell (i, j) for a con-
tingency table, and 1 or 0 for multiple-
choice data, _

g =(g,) = the vector of row marginals of F,

[ =(/,) = the vector of column marginals of
¥,

D, =diag (g;) = the diagonal matrices with

respect to row and column

D,

= diag(f;) marginals,
¥ =(y,) = a vector of weights for the rows of
F,
x =(x,)=a vector of weights for the col-
umns of F.

Additionally, let us fix the origin and the unit
of the quantified data by

gy=f'x=0, (1)
y'Dy=x'D.x=f, (2)

where f, is the sum (total) of the elements of
F, ie., f=1g=1f (see section Al in the
appendix for computational examples).

The task of quantification is to determine
y and x in a certain optimal way. Some of the
popular criteria, used during the past 55 years
of the history of this methodology, are

(a) Determine y so as to maximize the be-
tween-column discrimination.

(b) Determine x so as to maximize the be-
tween-row discrimination.

(¢) Determine y and x so that the correla-

tion between responses weighted by y and
those weighted by x, p, is a maximum,
where

p=y'Fx/|y'D,yx'D.x] e (3)

(d) Determine y and x so that regression of
x on y and regression of y on x be
simultaneously linear.

(e) Determine x so as to maximize the in-
ternal consistency reliability of y.

This list can be continued. However, the
important point is that all these optimization
criteria are met by the Eckart-Young or sin-
gular-value decomposition of data matrix F,
which can be written in the form of dual
relations as

py=D"'Fx = and px=D'F'y, (4)
where p is a singular value and identical to p
in eq. (3).

This set of formulas is used practically by
all the variants of the methodology men-
tioned in this paper.

In dual scaling, its extensions to other types
of qualitative data than those mentioned in
the description of F are achieved by applica-
tion of eq. (4) to modified data matrices. In
other words, data matrix F is replaced by
another matrix, appropriate for a specific type
of data, D, and D, being also redefined
accordingly. This makes it possible for dual
scaling to handle many types of data. A few
of such modifications are now illustrated,
using real data.

3. Example: Analysis of print ads for French
cognac

In this section, dual scaling is applied to a
data set from advertising research to illustrate
some of its unique aspects. The data are from:
Gaul and Bockenholt (1987), who have
analyzed paired comparisons data involving
cognac print ads and rating data on seven
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attributes of the print ads, obtained from 69
subjects. The subjects were participants in
courses of continued education at the Cham-
ber of Industry and Commerce of Karlsruhe
and students enrolled in an introductory
course on marketing at the University of
Karlsruhe.

In the first part of data collection, the
subjects were shown pairs of print ads of
French cognac and were asked ‘Which of the
two ads is more appealing to you?. There
were five brands — Bisquit, Courvoisier, Hen-
nessy, Martell and Remy - and two variants
of print ads for each brand designated as
brand (1) and brand (2), respectively; hence,
45 pairs of print ads in total.

In the second part of data collection, the
subjects were asked to rate on a five-point
scale each of the ten print ads with respect to
seven attributes, namely, ‘credible’, ‘extrava-
gant’, ‘imaginative’, ‘meaningful’, ‘precious’,
‘stimulating’ and ‘symphathetic’, which had
been pretested in Bockenholt and Gaul (1984)
and Gaul (1984).

The question of how advertising messages
influence a target audience has brought about
an immense amount of literature which will
not be surveyed here (see e.g., Gaul and
Bockenholt (1987) for an overview). For so-
called imagery products — examples are
cigarettes, cognacs, and cosmetics — which do
not differ in a really significant way with
respect to objective brand characteristics, sub-
jective and more consumer perceptions in-
fluencing features, such as prestige of owner-
ship, styling and other emotional meanings,
are of special importance for advertising. The
design of such ads often shows brand name
and /or picture of the brand together with a
headline (slogan, short text) where the major
part is reserved for a picture which induces
emotional feelings. More and more advertis-
ing uses such kinds of emotional brand differ-
entiation, thus, techniques to evaluate such
types of advertising messages are of impor-
tance.

In the following sections, it will be shown
how dual scaling as a unified approach can be
used to analyze the above mentioned percep-
tion and preference data from advertising re-
search.

3.1. Paired comparisons data

The 69 X 45 matrix F of paired compari-
sons (see e.g., Gaul and Schader (1987) for an
explicit presentation of F and a different
analysis via aggregations of relations) is used
as a starting point for the analysis via dual
scaling.

When presenting dual scaling of paired
comparisons data we have to consider two
relevant matters: analysis of paired compari-
sons data in general and quantification of
data with negative elements. As can be seen
in extensive bibliographies by Davidson and
Farquhar (1976) and Nishisato (1977, 1978),
paired comparisons data are one of the most
thoroughly investigated data types. The tradi-
tional method of paired comparisons, whether
it employs the normal-response model, the
angular-response model, or the logistic
(Berkson—Terry—Luce) model, relates the dif-
ference between two scale values to the prob-
ability that one stimulus is preferred to the
other (see e.g., Bock and Jones (1968)). A
statistical test for goodness of fit of such a
model is available, and one can set a confi-
dence interval on a contrast of scale values.
Thus, the traditional approach is statistically
rigorous and generally preferred to other al-
ternatives. From the practical point of view,
however, one must note that it is a unidimen-
sional model and cannot handle individual
differences. The fact that the model fits the
data indicates reproducibility of paired com-
parisons proportions from the derived scale
values, and not of the responses of each sub-
ject. Individual differences in using judge-
mental criteria (e.g., the attributes ‘credible’,
‘extravagant’, ‘imaginative’, ‘meaningful’,
‘precious’, ‘stimulating’ and ‘sympathetic’
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mentioned earlier) contribute to a multidi-
mensional configuration of stimulus points,
and a unidimensional scale obtained by ignor-
ing individual differences can be misleading
from the marketing point of view. Dual scal-
ing offers multidimensional analysis of paired
comparisons data and assesses contributions
of subjects to each dimension. The scale val-
ues and subjects’ weights on dimensions to-
gether contain information to reproduce each
subject’s paired comparisons responses, not a
group statistic such as proportion as it is the
case with the traditional unidimensional ap-
proach (see also Bockenholt and Gaul (1984,
1986) for additional arguments to perform
multidimensional analyses of paired compari-
sons data).

Another point worth mentioning explicitly
is the ability of dual scaling to accommodate
a data table with negative elements into its
repertory. This extension has enabled dual
scaling to handle such additional types as
paired comparisons, rank-order and rating
data.

Let us consider a small example which is
presented here because it may also serve for
clarification with respect to the following sec-
tions on rating and rank order data.

Example: Dual scaling methodology expects
that an element (i, (/,, j,)) of a paired com-
parisons matrix is coded as 1 if subject i
prefers the first stimulus j, of the pair ( j;, j,).
—1 if the second stimulus j, is chosen, and 0
for a tied response. Assume that two subjects
are involved in a paired comparisons task on
three stimuli. Let F be given by

Pairs of stimuli

. 1 1 2
wes (1) (] (3
1 1 1 -1
2 1 = —1

and let x,, x, and x; be unknown weights

(i.e., scale values) of the three stimuli. In
terms of the unknown scale values, the data
indicate that x, > x,, x; >x;, and x;>x,
for subject 1, and x, > x,, x; > x;, and x; >
x, for subject 2, where the symbol *>" in-
dicates ‘is preferred to’. The task of dual
scaling is to determine the scale values in
such a way that they are maximally dis-
criminative. For this purpose, it is more con-
venient to transform the subjects-by-pairs of
stimuli table F to a subjects-by-stimuli table
E, so that the problem may be stated as that
of determining weights for the subjects (rows
of E) so as to maximize stimulus discrimina-
bility (columns of E).

In constructing such a table E, Nishisato
(1978) used a Thurstonian analogue of non-
metric individual differences scaling by post-
multiplying matrix F with the well-known
design matrix for paired comparisons A which
in the underlying example has the form

1 oersil 0
A=]1 O =Tl
0 O sl

from which the resultant matrix E is derived
by

1 -1 0
E=FA=“ I | O
0 1 -1
=[2 -2 0]
0 -2 2f

E is also called dominance matrix because a
matrix coefficient e,, of E describes a value
which can also be obtained by counting the
number of times subject i/ prefers stimulus j
to the remaining stimuli minus the number of
times where stimulus ; is not preferred by
subject i.

This matrix E is subjected to dual scaling
with ‘modified’ diagonal matrices D, and D,,
due to negative elements. To explain this,
note that the initial coding of 1, —1 or 0
means the direction of pairwise contrasts.
Thus, the paired comparisons data can be
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expressed in terms of such contrasts with
correct directions as follows:

Subjects Contrasts of scale values
1 (%, —x,) (%, —X3) —(%;— %3)
2 (X1 —x) —(x—x3) —(x3—Xx3)

and rearranging of the contents of the above
table into a subjects-by-stimuli table yields

Stimuli
Subjects 1 2 3
1 Xy, X, — Koy —Kg  —Xay X3
2 xl, —Il _'xz, _xz X3, X3

Notice that each cell of this table consists of a
number of quantities, which is equal to the
number of stimuli minus one. This is how the
diagonal matrices, D, and D,, are defined
when the corresponding data table contains
negative elements ( D, is diag((number of sub-
jects) X (number of stimuli minus one)), D, is
diag((number of stimuli) X (number of stimuli
minus one)).) When the above table is pre-
sented, some elements are cancelled because
of opposite signs, resulting in the following
table:

Stimuli
Subjects 1 2 3
1 2x, —2x,5 0
2 0 —2x, 2x,4

The coefficients of this matrix are the ele-
ments of matrix E, that is of FA, defined
above where in the underlying example the
connection between the contrasts of the
stimuli values and matrix A is given by

X T Xy Xy
Xy = X3 | =A| %2 |.
Xy — X3 X3

In general, when n stimuli and N subjects are
used in paired comparisons, each cell of ma-

trix E reflects the outcome of (n—1) com-
parisons so that the total number of responses
of each row of the subjects-by-stimuli domi-
nance matrix is n#(n — 1) and the total num-
ber of responses of each column is N(n —1).
Some readers would notice that this formula-
tion is very much like the formulation of the
data matrix after removal of the so-called
trivial solution. Indeed, under this formula-
tion, too, each eigenvalue is the variance of
quantified responses.

To sum up, from the small example we
have learned the following:

If N indicates the number of subjects and
n the number of stimuli (with N =69 and
n =10 in the underlying print ads example)
then data matrix F is N X n(n—1)/2. This
matrix is converted to an N X n dominance
matrix, E = (e,;,), where e, is the number of
times subject i prefers stimulus j to the re-
maining (7 — 1) stimuli minus the number of
times subject i does not prefer stimulus j
over the other stimuli.

Simultaneously with the replacement of F
by E, the diagonal matrices, D, and D,, must
be re-defined. For each subject and each ob-
ject there are (n— 1) comparisons, thus, in
counting all row and column comparisons,
one obtains D, = diag(n(n — 1)), D, =
diag(N(n— 1)) and f,= Nn(n—1) (see sec-
tion A2 in the appendix for further computa-
tional examples).

With the redefined D, and D, matrices
and the substitution of F by £ formula (4)
determines the dual scaling solution for the
paired comparisons data, namely, weights y
and x that maximize p.

This extension of the method to a matrix
with negative elements may appear extraor-
dinary, casting a doubt about the dual rela-
tions. Notice, however, that the dual relations
of eq. (4) apply to multiple dimensions, of
which all the decompositions, except that of
the trivial solution, are associated with
matrices containing negative elements. To
show this point, it is known that eq. (4) can
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be rewritten in a multidimensional form as

F=D,(11"+ pyy1 x| + py 35X + .
+puviXi) Do/ 1

Dual relations exist with respect to all the

following matrices:

F, F=DAV'D./f,

F—D,(11" + py,x{) D /f,.

F=D,(11" + py Xy + p22%3) Do/ frs

and so forth.

Yet, D, and D, are defined in terms of the

row and the column marginals of matrix F,

respectively, because the above residual

matrices are all based on so many numbers of

responses as given by the marginals of matrix

F. Dual scaling of paired comparisons data

amounts to an extension of the method to a
situation in which the so-called trivial solu-

tion is already removed from the input matrix
for scaling.

The first five dimensions of the evaluation
of the underlying data account for about 86%
of the total variance, with individual contri-
butions being respectively 36% (dimension I),
19% (dimension II), 14% (dimension III), 9%
(dimension IV) and 7% (dimension V). Fig. 1
shows the configuration of the print ads in
the first two major dimensions, which account
for about 56% of the total variance.

The results are very similar to those ob-
tained by Gaul and Bockenholt (1987) using a
probabilistic ideal point model. This similar-
ity in results was more or less anticipated
because the two approaches can be consid-
ered as based on the generalized (weighted)
least-squares principle. The two approaches
should not differ very much when the first

Dimension I (36%)
Dimension I1 (19%)

2.6 i
|
|
|
|
|
Honneasy [ 21
. |
|
|
|
Hanneasy (11
1 Courvolaler (2)
¥
Courvolaler 1)
+
|
|
I MarLell (1]
P P b (= BT S S Sl . AR
L Blaquit (20 r ; 1
+ Marlell (20
BLaquil (1)
M |
|
Ramy (21 |
+ i Remy (1)
+
-0, 6
T ™ T ™ T
-0.8 e.e 2.8

Fig. 1. Analysis of paired comparisons data [or ten print ads,
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one or two dimensions are looked at, but the
discrepancy between them would widen as
one would go down to less dominant dimen-
sions. As for the first dimension, it is known
that even the means of the dominance scores
resemble those optimal results from dual scal-
ing. Considering that dimension I is domi-
nant, the real winners are Martell (1) and
Martell (2). It is interesting to note in fig. 1
that the two print ads of each brand are
closely located or clustered. Does this also
mean that the two ads of each brand have
similar attributes? In addition, one may ask
what attributes appear to contribute to the
popularity of the Martell print ads, as op-
posed to Hennessy (1) and Bisquit (2), in
dimension I, and also what attributes dis-
tinguish e.g. between the Hennessy print ads
and the Remy print ads in dimension II. In
the next section, we will try to find answers to
these questions.

3.2. Rating (successive categories) data

The sixty-nine subjects rated each brand
on a five-point scale with respect to seven
attributes, as mentioned before. Rating data
are also called successive categories data, for
responses are typically given by placing each
stimulus into the most appropriate one of the
ordered categories (e.g., strongly disagree,
moderately disagree, neutral, moderately
agree, strongly agree). Given this type of data,
the most natural choice of analysis would be
again the traditional statistical approach of
the method of successive categories (see e.g.,
Bock and Jones (1968)) which, following
Thurstone’s framework, provides a statistical
test for goodness of fit of the model, scale
values of the stimuli and those of category
boundaries. However, the problem is again
the inability to handle individual differences
in judgement. Another possibility is to con-
struct a contingency table of print ads-by-cat-
egories frequencies. Since the categories are
ordered, it would be preferred to impose a

complete-order constraint on the weights for
the categories. Quantification under con-
straints concerning partial or complete orders
can be carried out with any of the existing
methods (see e.g. Nishisato and Arri (1975),
de Leeuw, Young and Takane (1976), Tanaka
and Kodake (1980), and Nishisato (1980)).
Such an approach, however, does not provide
estimates of category boundaries, which are
sometimes useful, nor taken into considera-
tion any individual differences in judgement.
Thus, it looks as though dual scaling may be
preferred to these alternatives. Let us now
turn to the dual scaling formulation.

By taking into consideration category
boundaries between the different categories,
rating data can be converted to rank order
data of stimuli and category boundaries,
which are then transformed into the elements
of a subject-by-(category boundaries, stimuli)
matrix £ of dominance scores (see section A3
in the appendix for computational examples).

Let m denote the number of category
boundaries. Then E is N X (m+n) (with
N, n as given as before). The two diagonal
matrices are redefined as D, = diag((m +
n)(m+n—1)), D, = diag( N(m + n— 1)), and
fi=N(m+n)m+n—1). With these newly
defined matrices D, and D, and the substitu-
tion of matrix E for F, formula (4), again,
provides a solution.

Because all the category boundaries must
be correctly ordered, the solution with a max-
imum value of p is typically the only solution
that satisfies this order constraint. For this
reason, it is customary to extract only one
solution that provides the correct order of
category boundaries. Fig. 2 shows the scale
values of the print ads on each attribute scale.

Note that those scale values represent max-
imally discriminative values obtained by dual
scaling, rather than means of rating data. In
other words, the means of rating data would
show less dispersions of the brands on each
attribute. Although category boundaries for
each attribute scale were also calculated as
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Martell (1)

Martell (2)
Courvoisier (1)

Hennessy (2)

Remy (1)
Courvolsier (2)
2.0

Bisquit (2)

Blsquit (1)
Remg %2)
Hennessy (1)

-4 4

T T T T

1 2 3 i
Sympathetic Credible Extravagant

Fig. 2. Scale values for the print ads on seven attribute scales.

part of the dual scaling output, they are not
shown in fig. 2 to simplify the graphical rep-
resentation.

A noteworthy point is that the two attri-
butes ‘sympathetic’ and ‘stimulating’ provide
wider distributions of the print ads than the
others, suggesting a stronger discriminative
property with respect to the subjects’ judge-
ments of the print ads than others. In con-
trast, ‘credible’ and ‘imaginative’ show much
narrower distributions of the print ads.

Note that the winners Martell (1) and
Martell (2) are very high on ‘sympathetic’ and
‘stimulating’, and that the profiles of the two
ads are very similar. The profile of Hennessy
(1) is quite different from that of Hennessy
(2). Hennessy (1) is least ‘stimulating’ and
least ‘ precious’. Notice, also, that Courvoisier
(1) and Courvoisier (2) are most ‘extravagant’,

Meaningful

5 6 7

Stimulating Imaginatcive Precious

and that Remy (1) and Remy (2) are the least
‘extravagant’.

The variance among the ten print ads ex-
plained by each unidimensional attribute scale
in fig. 2 is — from the largest to the smallest —
as follows: ‘stimulating’ (47%), ‘sympathetic’
(42%), ‘credible’ (41%), ‘precious’ (41%), ‘ex-
travagant’ (39%), ‘meaningful’ (34%), and
‘imaginative’ (34%). These numbers suggest
multidimensionality of the data.

For multidimensional analysis, it is a com-
mon procedure of dual scaling to convert
rating data to paired comparisons data.

3.3. Paired comparisons data generated from
rating data

When rating data are available, one can
generate paired comparisons data from them.
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For instance, one can find out whether one
print ad is rated higher on ‘sympathetic’ than
on ‘credible’. With seven attributes, therefore,
one can generate 21 (i.e., 7(7 —1)/2) paired
comparisons on each print ad. Similarly, one
can ask if e.g., Martell (1) is more ‘extrava-
gant’ than Remy (2). With ten print ads, one
can derive 45 (i.e., 10(10 — 1) /2) paired com-
parisons on each attribute.

This conversion of rating data to paired
comparisons may raise some questions about
its validity. It is at least empirically known,
however, that this method of conversion pro-
vides the first few dimensions which are valid
— valid in the sense that they are very close to
the corresponding solutions obtained from the
traditional method of the paired comparisons
experiment. One can also check its validity by
observing the similarity in results between

those in fig. 2 and the first dimensions of the
analyses to be presented in the following.

Explanations concerning the evaluation of
paired comparisons data, especially by dual
scaling, will not be repeated, here (see e.g.,
the remarks and the small example provided
in section 3.1).

Instead, let us first look at the paired com-
parisons of the print ads with respect to each
attribute.

In the previous section dual scaling re-
vealed that the attributes ‘stimulating’ and
‘sympathetic’ are two key attributes of the
winning ads of Martell (1) and Martell (2).
Fig. 3 depicts the print ads in the ‘stimulat-
ing’ attribute space while fig. 4 shows corre-
sponding relations in the ‘sympathetic’ attri-
bute space. Both figures are similar to fig. 1,
indicating strong effects of these attributes on
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Fig. 4. Representation of the print ads based on the attribute ‘sympathetic’.

determining the over-all paired comparisons
structure. The respective dimension 1 of the
current results of the two attributes (the pro-
jection of the locations of the print ads on
this dimension) resembles the relations in fig.
2 very closely, suggesting the validity of the
conversion procedure of rating data into
paired comparisons data.

Since there are so many results to look at,
let us choose only more attribute. Fig. 5 shows
the configuration of the print ads in the ‘ex-
travagant’ attribute space. Dimension I of fig.
5, again, supports the corresponding results
of fig. 2. Note, however, that now the two ads
of each brand show greater differences in this
attribute space than in the spaces of the more
decisive attributes of ‘stimulating’ and ‘sym-
pathetic’.

On the other side we can (re)examine what
attributes, if any, seem to be key characteris-
tics of each ad of each brand, using the paired
comparisons data on the seven attributes,

generated from the rating data. When the ten
print ads were analyzed with respect to the
attributes, it was discovered, without any ex-
ceptions, that the two attributes, ‘meaningful’
and ‘imaginative’, formed a tight cluster at
one end of a principal axis with the rest of the
attributes distributing in the other side of the
space. Since such ‘common’ findings does not
contribute to distinct characterizations of the
print ads, it was decided to discard those two
attributes, and to investigate characterizations
of each print ad in terms of the other five
attributes. Fig. 6 shows the attribute struc-
tures of Martell (1) and Martell (2). The
distributions of the attributes are, as ex-
pected, very similar between the two print ads
Martell (1) and Martell (2), and the two are
preferred over the other ads because of the
attributes ‘stimulating’ and ‘sympathetic’, as
opposed to ‘extravagant’, ‘precious’ “and
‘credible’ (also some subjects preferred the
latter three attributes to the first two as one
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can infer from negative weights of those sub-
jects on dimension I which may give rise to
segmentation of subjects). Dimension II also
splits subjects into two groups, those who like
Martell’s attributes ‘extravagant’ and ‘stimu-
lating’, and those who like the attribute
‘credible’.

Fig. 7 shows the attribute structures for the
Courvoisier ads, and was chosen as an exam-
ple which depicts stronger differences with
respect to some attributes. Courvoisier ads
are preferred over other ads because of the
attribute ‘extravagant’ which supports find-

ings from e.g. fig. 2. The attribute ‘precious’
determines part of the meaning of dimension
II while attributes as ‘credible’, ‘sympathetic’
and ‘stimulating’, which are clearly opposite
to ‘extravagant’ on dimension I, are very dif-
ferent for the two ads with respect to dimen-
sion II.

Such findings, available for all print ads,
support efforts to evaluate key characteristics
for the ads of the different brands.

The above data can be rearranged into a
frequency table with the number of times
each category of each attribute is associated

Table 1
Ranking of the print ads on successive category scales of attributes,
Attributes Print ads

e 2 3 4 5 6 7 8 9 10
Sympathetic 5 10 : 8 1 9 4 6 7 2
Credible 5 8 4 10 6 7 9 1 2 3
Extravagant 9 3 2 7 8 10 5 1 4 6
Meaningful 7 9 5 1 3 10 2 6 4 8
Stimulating 6 10 3 9 1 8 4 5 7 2
Imaginative 1 2 4 7 3 9 6 5 10 8
Precious 1 10 2 B 3 8 8 5 7 6

® Notes: 1= Remy (1), 2= Hennessy (1), 3= Courvoisier (1), 4=

8 = Courvoisier (2), 9 = Bisquit (2), 10 = Martell (2).

Bisquit (1), 5= Martell (1), 6 = Remy (2), 7= Hennessy (2),



164 S. Nishisato, W. Gaul / Marketing data analysis by dual scaling

with' each print ad. The frequency table of
categories of attributes by (print ads X
attributes) may be scaled with the weak order
constraint on the categories. This analysis may
be worth carrying out. However, this was not
done here for the reasons that first of all even
under the weak order constraint analysis pro-

vides only one solution within the current

formulation of dual scaling, and that the posi-
tions of the attributes and the print ads can-
not be isolated since the columns of the
juxtaposed matrix are combinations of the
print ads and attributes.

3.4. Rank order data

In the analysis of section 3.2 dual scaling
of the successive categories data provided
unidimensional scales of the ten print ads on
each of the seven atttributes. To show an
application of dual scaling to rank order data,
these scale values of the ads were ranked
within each attribute, leading to a 7 X 10 ma-
trix of rank order data; see table 1. There are
many methods to analyze rank order data
(see e.g., Guilford (1954) for an early refer-
ence and the bibliographies by Nishisato
(1977, 1978) for more recent developments).
As is known, the subjects-by-stimuli table of
rank orders is ipsative and row-conditional.
In other words, direct comparisons across
subjects are meaningless and principal com-
ponent analysis of stimuli, for example, would
produce only artefacts of ipsativity. The
stimuli-by-ranks table of frequencies has even
tighter constraints than the subjects-by-stimuli
table, namely, the constant row marginals
and the constant column marginals. Bock and
Jones (1968), for example, discuss a statistical
treatment of the table, following Thurstone’s
treatment of rank orders (Thurstone (1931))
using a unidimensional model. We can ad-
vance here the same argument as that men-
tioned in relation to paired comparisons data.
We wish to capture individual differences and
multidimensionality of stimuli. Following ex-

actly the same reasoning as before, the formu-
lation of paired comparisons data can be
applied directly to rank order data. Again, the
dominance matrix contains negatiye élements,
and we can redefine D, and D, in terms of
the number of pairwise comparisons involved
in judgement. Unlike paired comparisons
data, the dominance matrix for rank-order
data can be systematically and easily derived.

Let k,, be the rank of print ad j on
attribute /. Then, element ¢,; of dominance
matrix £ is given by

e =n+1-2k;,

where # is the number of print ads (#n =10 in
the present example). With modified diagonal
matrices, D = diag(n(n— 1)), D,= diag(N(n
— 1)), hence f,= Nn(n—1), where N is the
number of attributes (N =7 in the present
example), dual scaling can be carried out.

The rationale for defining D, and D, is the
same as given for paired comparisons data.
Because of limited space, only a brief
summary of main results will be given; see
table 2.

Three solutions were obtained. It is inter-
esting to note that dual scaling of a matrix
consisting of seven independently obtained
dimensions provides results similar to some
of the earlier multidimensional results carried
out in previous single analyses.

3.5, Forced classification application

Rating data with discrete categories can be
treated as multiple-choice data, where the
number of categories corresponds to the num-
ber of response options. In the present exam-
ple, the rating data on the attributes of the
print ads can be analyzed as multiple-choice
data.

Suppose that N subjects answered n multi-
ple-choice questions, and that the data are
expressed as

F=[8, Foeiis Byovin B
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Table 2
Main contributors to three solutions from rank orders of scale
values,

Solution  Contributing Major patterns
attributes
1 Sympathetic, [Martell (1), Courvoisier (1),
Stimulating, Martell (2)] versus

(39%) Precious [Hennessy (1), Remy (2)]

2 Credible [Courvoisier (2), Bisquit (2),
Martell (2)] versus

(21%) Extravagant [Bisquit (1), Martell (1),
Remy (1)]

3 Imaginative [Remy (1), Hennessy (1)]
versus

(16%) Meaningful [Bisquit (2), Hennessy (2)]

where F, is NXm,, consisting of 1's (re-
sponses) and 0’s (no responses), m, being the
number of options of item (question) ;. Ma-
trix F, is therefore the incidence matrix or
response-pattern matrix of item .

Suppose that F, is multiplied by a positive
constant k, and that the resultant matrix is
denoted as F(j X k), i.e.,

F(jxk)=[Fi Fyyos s kFyone By

As k approaches infinity, it is known
(Nishisato (1984)) that dual scaling of F(j X
k) becomes identical to that of the original
matrix projected onto the subspace spanned
by the columns of F, that is, dual scaling of
P,F, where P,= F,(F/F,)"'F; (see section A4
in the appendix for computational examples).

If question j is about age, dual scaling of
P,F quantifies the data so as to discriminate
optimally between young and old, which
therefore enables the investigator to identify
questions that contribute to distinguishing be-
tween subgroups or segments of subjects. In
the above example, age is referred to as the
forced classification criterion.

This idea can be extended to dual scaling
of paired comparisons data in which a pair is
chosen as the criterion. This mode of forced
classification generates a scale that maximizes
the difference between the two stimuli in the

criterion pair, that is, a bipolar scale with the
two stimuli occupying the two ends of the
continuum, This form of forced classification
is used in this study. Gaul and Schader (1987)
applied a ‘CAR (Clusterwise Aggregation of
Relations)’ technique to the same paired com-
parisons data on the ten print ads. Although
their method is at least theoretically very dif-
ferent from dual scaling, it is, of course, of
interest to compare the two results. Gaul and
Schader (1987) provided two optimal seg-
ments among the 69 subjects and presented
the corresponding two distinct orderings of
the print ads, together with a graph based on
a segmentation approach of the Gaul and
Bockenholt (1987) probabilistic ideal point
model.

The first segment by the Gaul-Schader
algorithm ranked Martell (1) and Bisquit (2)
at the two extreme positions. Therefore, forced
classification of dual scaling was carried out
with Martell (1) and Bisquit (2) as the crite-
rion pair at the two ends of the scale. This
ordering is (from the most preferred to the
least):

Martell (1) > Martell (2) > Courvoisier (1)
> Courvoisier (2) > Remy (1)
> Hennessy (2)
> Remy (2) > Bisquit (1) > Hennessy (1)
> Bisquit (2).

This ranking is identical with that of the
Gaul-Schader method. The difference be-
tween the two approaches becomes apparent
when the segmentation problem is consid-
ered. Unlike the CAR approach, dual scaling
assigns weights to the subjects according to
their contributions to each dimension, but
without producing distinct segments. The 24
subjects of the first segment yielded from the
CAR approach have generally large weights
in the dual scaling solution, suggesting a high
degree of comparability between the two re-
sults.

One of the differences between the CAR
and dual scaling approaches can be regarded
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as that between disjoint and discrete cluster-
ing and continuous clustering. Most
techniques of cluster analysis generate dis-
joint clusters, where an element is classified
into a single cluster. In contrast, dual scaling,
principal component analysis and factor anal-
ysis assign a weight to each variable for each
dimension (cluster), and such a weight pro-
vides information as to how many dimensions
a particular variable is contributing to. In the
latter case, the problem of cutting points in
deciding which dimension a variable should
be associated with becomes a serious issue to
investigate this being the case if one wants to
use the technique for clustering variables. It is
not surprising that the two approaches have
shown similar results on one dimension, but it
is natural that they become different in subse-
quent dimensions.

Dual scaling provides a very clear-cut
method for segmentation only when an exter-
nal criterion exists.

3.6. Résumé of results on the print ads data

When the dual relations as given in for-
mula (4) are applied to a data matrix F and
the diagonal matrices D, and D, (or ap-
propriate redefined matrices), quite a number
of possible and interesting ways of optimal
quantifications of qualitative data can be per-
formed. The present paper has illustrated only
a few of them.

Using the Gaul and Bockenholt (1987) data,
five applications of dual scaling were pre-
sented.

When a new advertising campaign is needed
or when the effect of own print ads in re-
lation to those of main competitors in an
underlying product class has to be assessed,
an evaluation of data as described in the
previous sections can be useful.

Different analyses found the Martell print
ads to be the winners with respect to the first
dimension as in fig. 1. The attributes *stimu-
lating” and ‘sympathetic’ are most important

for their perceptual positioning as can be seen
from fig. 2. The analyses as depicted in figs. 3
and 4 relate the print ads with respect to
these important attributes (stimulating, sym-
pathetic) in a paired comparisons based mul-
tidimensional representation while fig. 35
shows such a representation based on the
attribute ‘extravagant’. On the other side, for
each print ad (or for the two print ads of the
same brand) one can represent the attributes
(or the differences of the attribute positions
with respect to the two print ads of the same
brand) in multidimensional spaces, see figs. 6
and 7, to assess their contributions to the
main perceptual dimensions. Also, rank orders
can help to reveal patterns which support the
characterization of the print ads in terms of
those attributes which cause major patterns.

Finally, the forced classification variant of
dual scaling was applied to paired compari-
sons data with a pair of objects as the forced
classification criterion. The present study has
demonstrated only several potential applica-
tions of dual scaling to marketing data. For
further findings concerning advertising re-
search aspects, see Gaul and Bockenholt
(1987) and Gaul and Schader (1987).

4. Further remarks and conclusions

Since the main purpose of the present paper
is in a brief exposition of some of the unique
aspects of dual scaling, detailed descriptions
of the different variants were not provided.

With respect to each aspect, interested
readers are referred to the original articles
(Nishisato (1978) for paired comparisons and
rank order data, Nishisato (1980) and Nishi-
sato and Sheu (1984) for successive categories
(rating) data, and Nishisato (1984, 1987) for
forced classification). Other topics not dis-
cussed here, as treatment of ordered cat-
egories, analysis of multiway data matrices
and analysis of sorting data are illustrated in
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Nishisato (1980) and Nishisato and Nishisato
(1984).

One can also consider dual scaling of cat-
egorized data of originally continuous data.
Thus, it looks as if one can apply-dual scaling
to a large number of situations. It is hoped
that the present paper may serve as a useful
introduction to the potential of this method-
ology in marketing data analysis.

Appendix

Sample calculations are provided here to
explain how dual scaling is able to handle
different types of marketing data.

Al. Basic formulation

Consider the following 2 X 3 contingency
table,

[5 3 2
F_[374'

where the two rows correspond to the cat-
egories of the row variable (e.g., union vs.
non-union members) and the three columns
to the column variable (e.g., agree, neutral,
disagree). Then g, f, D,, D., y and x are
given by

10 10 0 »
g=l14|> 2=l o 14]’ Y=1»n
8

g8 0 0 X
0 10 0 A X = xz r
0 0 6 X,

where y and x have to fulfil the constraints

3

, D,=

f= 10
6

10y, + 14y, =0,  10y? + 14y} =24,
8x, + 10x, + 6x, =0,
8xf + 10x2 + 6x7 =24,

according to formulae (1), (2).

A2. Paired comparisons data analysis by dual
scaling

Consider that five subjects participated in
a paired comparisons experiment on four
stimuli (i.e., N=5, n=4) and that data as
shown in the following 5 X 6 data matrix F
were obtained:

Pairs of objects

. 1\ (1) (1) (2) (2) (3

Subjects (2) (3) (4) (3) (4) (4)
1 1 -1 1 =1 1, 1
2 i 1.1 1 1 -1
3 1 =1 1 =1 =1 =1
4 =101, .8 . I 1.1
5 6, =1 =1 =1 =1, =1

Then, matrix E is 5X 4, with elements e,
calculated as follows. Look at subject 1 and
stimulus 1. This subject preferred stimulus 1
over 2, 3 over 1, and 1 over 4 ((1, (1, 2)) =
1,(1,(1,3)=—-1,(1.(1,4)) = 1), hence e,
=1 (i.e., stimulus 1 is preferred to the other
three stimuli twice, and not preferred to the
others once). Similarly, for subject 1 and
stimulus 4 ((1, (1, 4) =1, (1, (2, 4)) = 1,
(1, (3, 4)) = 1) one gets e;, = — 3. In this way
the dominance matrix is calculated as

1 =1 3 =3
3 1 =3 =1
E= 1: =3 1 1

0 3 =l =2

=2 =2 1 3
More formally, as was demonstrated in the
small example in section 3.1, we can also

obtain matrix E by postmultiplying F with
design matrix

1 =1 0 0
1 0 -1 0

1 0 0 =1
A= 0 1 =1 0
0 1 0 -1

L0 0 b =il
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constructed from the contrast equation with
respect to the underlying situation

_XI _ xz_
X] = X3 X
xz_X3 X3 J
xz_xd X4

an - X4

As is seen in this example matrix £ has the
property that every row marginal is zero. Thus,
D, and D, must be redefined. Since every ¢,
is based on (n — 1) comparisons, in counting
the number of comparisons in rows or col-
umns one gets D, = diag(n(n—1)) and D, =
diag( N(n — 1), so that f,= Nn(n—1).
In the present example, we have

(12 0 0 o0 0
0 12 0 0 0
D=lo0o 0 12 0o o}
6 0 6 120 0
L0 0 0 0 12

[15¢ 0 @ 0
a1 06 @

o o 15 of 45%
L0 0 0 15

A3. Rating (successive categories) data analy-
sis by dual scaling

Consider an example in which four sub-
jects rated three stimuli in terms of four cat-
egories (never (1), sometimes (2), often (3),
always (4)) as follows:

Stimuli
Subjects 1 2 3
1 3 2 4
2 2 1 3
3 1 1 2
4 2 4 4

Let us indicate by #,, 1, and ¢, three category
boundaries, ¢, being between never and

sometimes, ¢, between sometimes and often,
and 7, between often and always. Then, e.g.,
the decision of subject 1 can be rearranged as
follows:

¢, :stimulus 2: 7, : stimulus 1: 75 : stimulus 3.

In this way, the original data are first trans-
formed to rank order data of both category
boundaries and stimuli as described by the
following matrix:

Category boundaries and stimuli

Subjects #;, t, t; St1 St2  St3
1 1 3 5 4 2 6
2 2 3 1 5
3 3 & 6 L5 13 4
4 1 3 4 2 5.5 83

In a second step, the dominance matrix E is
calculated. If we indicate by m the number of
category boundaries (and by N respectively n
the number of subjects respectively stimuli)
then £ is NX(m+n) (with N=4, m=3
and n =3 in this example) and given by

5 1 -3 -1 3 =5
3 -1 -5 1 5 -3
E=l{ =3 =3 a a -1
5 1 -1 3 -4 -4

Again, D, and D, have to be defined suitably
(see also section A2). Here, for each subject
and each category boundary or stimulus we
have (m+ n—1) comparisons, hence D,=
diag((m +n)(m +n—1)), D.=diag(N(m +
n—1)),and f,=N(m+n)(m~+n—1). In the
present example, D, is the 4 X4 diagonal
matrix with 30 in the main diagonal, D, is the
6 X 6 diagonal matrix with 20 in the main
diagonal, and f, = 120.

A4. The forced classification variant of dual
scaling

Consider the following example of multi-
ple-choice data, collected from five subjects
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on three items:

Items
1 2 3

Subjects Options Options  Options

1 2.3 1,2 .3 l.2
1 1 0 0(1 0 0|0 1
2 j R ST & L 5 A AR /%1 I (T
3 0 1 0(0 O 1[0 1
4 0 1 0|0 1 0|0 1
5 0.~ 00 0 L L 0

The above data matrix of 1s and Os will be
indicated by [ F,, F,, F;]. the subscripts refer-
ring to items.

If we assign to the eight options of three
items unknown option weights x,,..., xg, the
subjects-by-items matrix of quantified re-
sponses is given by

Items
Subjects 1 2 3
1 X, X, Xg
2 X, Xs X3
3 X Xg Xg
4 b X Xg
5 X3 X, X4

Let us define the total score of subject / to be
the sum of the three weights of the options
the subject chose.

Then, consider product-moment correla-
tion between the total scores and each item,
e J=1,2, 3, and inter-item correlations, r,,,
J#h, j=1,2,3, h=1,2, 3. In the following
matrices

(a) [Flv F, FJ] (b) [Fh F, K, FJ]‘

(c) [F, B, B, B, E]

item 3 is repeated twice in (b) and three times

in (c). The resultant correlation coefficients of
interest are

(a) rj;=0.54, ry=0.30, r,=0.73,
(b) n;=0.74,  r;; =037, r,=0.97,
(¢) ra=0.76,  r,; =040, ry,=0.99,

and one can see that as the number of rep-
etitions of a particular item, item 3 in this
example, increases, so do the corresponding
correlation r,; and correlation r;. This is
understandable because the incidence matrix
of the corresponding item, F; in this example,
becomes more dominant in the data matrix as
the number of repetitions increases. This is
the proceeding of forced classification. A spe-
cial item is chosen and called criterion item.
As the number of repetitions of the criterion
item increases, geometrically, the criterion in-
cidence matrix eventually becomes a basis for
the principal plane. Computationally, it is
advantageous to use, for example, [F, F,,
2F] for (b) and [ F,, F,, 3F;] for (c). for these
matrices are structurally equivalent to the
original ones of (b) and (c).
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