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Pyramidal Classification Based on Incomplete Dissimilarity
Data

Wolfgang Gaul Martin Schader

University of Karlsruhe University of Mannheim

Abstract: Two algorithms for pyramidal classification — a generalization of
hierarchical classification — are presented that can work with incomplete dissimi-
larity data. These approaches — a modification of the pyramidal ascending
classification algorithm and a least squares based penalty method — are described
and compared using two different types of complete dissimilarity data in which
randomly chosen dissimilarities are assumed missing and the non-missing ones are
subjected to random error. We also consider relationships between hierarchical
classification and pyramidal classification solutions when both are based on incom-
plete dissimilarity data.

Keywords: Cluster analysis, Missing values, Monte Carlo evaluation, Penalty
approach, Pyramidal classification.

1. Introduction

1.1 Motivation

The motivation of this paper is twofold. First, the problem as to how
missing values in dissimilarity data can be handled is of general interest (as a
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Of course, condition (3b) is weaker than condition (3a). Additionally, for
every hierarchy H on / there always exists a total order < on I such that every
K e H is an interval with respect to that order. For example, consider any
corresponding tree representation of A and order the leaves/singletons, e.g.,
from left to right. Thus, one can state

Proposition 1: Every hierarchy on 1 is a pyramid on L.

To produce graphical representations of hierarchies and pyramids, an index
for the elements of a hierarchy or a pyramid is needed. Let f:S — R be a
mapping that assigns real numbers to the elements of S = 2/. Potentially use-

ful conditions for fas an index function are

fik)=0 & |KI1=1, VKeS§.

(1 K | denotes the cardinality of K .) (5
KcL = fIK)SAL), YK,LeS. (6)
KcL K#L = f(KY<f(L), VK,LeS. (7a)
KcL K#L, f(K)=f(L) =3J,J,€ 8

K#J,,K#J,, and K=J,NnJ3. (7b)

Standardization of faccording to condition (5) is no restriction because
addition of a suitable constant is always possible.

Condition (7b) prevents chaining of clusters on the same index level
(see Appendix A for an example). Two non-nested clusters J, and J, with the
same index may, however, generate K via conditions (3a,b).

Definition 2:

(2.1) (H.f)is an indexed hierarchy on I'if H is a hierarchy on / and f
satisfies conditions (5) and (6).

(2.2) (P,f)is an indexed pyramid on I if P is a pyramid on ] and f
satisfies conditions (5) and (6).

(2.3) (8. is strictly indexed if (S,f) is an indexed hierarchy/pyramid and
f satisfies (7a).

(2.4) (S.f) is semi-strictly indexed if (S,f) is an indexed hierarchy/
pyramid and f satisfies (7b).

The graphical representation of indexed hierarchies by dendrograms is well-
known (e.g., Kruskal, Landwehr, and McKae 1985). For the graphical
representation of indexed pyramids a similar procedure can be used.
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Figure 1a. Graphical Representation of an Indexed Pyramid.

Figure 1b. Simplified Graphical Representation of the Indexed Pyramid of Figure 1a.
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Example 1:

Let/={1,2,3,4},P ={ {1}, (2}, {3}, {4}, {2,3}. (1,2, 3}, {2,3,4), (1,2,
3,4} }. Clearly, 1 <2< 3 < 4is a total order on / such that every element of
P is an interval with respect to this order. Let f be given by f({i}) =0,
Vie Land f({2,3)) = 1, f({1,2,3)) = 2,f({2,3,4)) =3, f({1,2,3,4})) = 4.

Now (P,f) is a strictly indexed pyramid and its graphical representation
is displayed in Figure la. As can be seen in this example, pyramidal
classification allows non-nested overlapping of clusters. Furthermore, note
~ that each cluster can have at most two successors with respect to the order
relation “‘<"’ on 2’. Figure 1b shows a simplified version of Figure la. This
type of simplified output will be used in the following.

To provide an agglomerative algorithm using dissimilarities between
pairs of objects and to represent the structure underlying such data via hierar-
chies and pyramids, further notation and definitions are needed.

Letd: 1> >R, bea mapping that assigns non-negative real numbers to
pairs of objects of the underlying set /. Potentially useful conditions for d are
(d;j is used as an abbreviated notation for d(i, )

d;j=0 e i=j. (8)
dijzdﬁ, Vi,jE I (9)
dy < max {d,'j, djk)! Vi, j ke I. (ultrametric condition) (10)

There exists a total order < on / such that dj;, > max { dij, dy ),

Vi, j,ke Iwithi<j<k. (pyramidal condition) (1D

As it is known that potentially negative-valued measures of association
between pairs of objects are sometimes used as input to clustering applica-
tions, one may ask whether the non-negativity of d is an important restriction.
Note that we have standardized the index faccording to condition (5) and that
there are interrelationships between f and corresponding dissimilarity data
that we will have to take into consideration in the algorithms to be described
later. Thus, any measure of association one wants to use as input should first
be transformed to non-negative dissimilarities. Note, additionally, that ‘‘dis-
similarity (data)’’ or ‘‘dissimilarities”” are used as generic terms throughout
the paper. We add specific adjectives, e.g., ‘“‘empirical’’ or ““ultrametric’’, to
denote different types of dissimilarity data.

Definition 3:

(3.1) dis an ultrametric dissimilarity on I if d satisfies conditions (8), (9),
and (10).
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Table 1a: Dissimilarity Data Between Pairs of Objects for /={1.....6}
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Figure 2a. Pyramidal Classification (Indexed Pyramid) of the Dissimilarity Data of Tables
la,b.

— N W e Ot O =]

|

3 1 6 4 2 5

(=]

Figure 2b. Hierarchical Classification (Indexed Hierarchy, Complete-Linkage) of the Dissimi-
larity Data of Tables 1a,b.
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2.  As the model on which pyramidal classification is based is weaker than
hierarchical classification models, one can expect that in general pyram-
ids will fit dissimilarity data ‘‘better’’ than dendrograms. However,
“‘better’’ has to be explained, e.g., in terms of differences of goodness-
of-fit values. Of course, whenever a stronger model fits the data equally
well or the difference of corresponding fit values is ‘‘small’’, the stronger
model has a good chance to be preferred.

3. The dendrogram solution of Figure 2b will not change if such values as
15, O51, 024, 842, 045, 854 are missing in the dissimilarity data (i.e., 20%
of the given data are missing), whereas the pyramidal representation of
this first example of incomplete dissimilarity data would be affected by
such missing values.

We postpone discussing the differential effects on hierarchical and pyramidal
classification of incomplete dissimilarity data. Instead, we consider different
approaches to pyramidal clustering and their relation to the problem of miss-
ing data.

2. Two Approaches Using Pyramidal Classification to Handle Missing
Values in Dissimilarity Data

2.1. The PACII (Pyramidal Ascending Classification with Incomplete
Information) Modification

We consider whether the PAC (Pyramidal Ascending Classification)
algorithm as described, e.g., in Diday (1986, 1987) and Diday and Bertrand
(1986) can be modified to cope with missing values in the input data. PACII
(Pyramidal Ascending Classification with Incomplete Information) will be
used as a label to distinguish our modified version from the original PAC
algorithm. Our outline of the PACII algorithm emphasizes two points: First,
the PACII algorithm starts with clusters each consisting of a single element of
the set /. Using the available dissimilarities, the closest pair of clusters is
joined to form a new cluster. (Ties can be arbitrarily broken.) This procedure
is repeated until the set / forms a cluster or no more clusters can be joined.
Second, in the PACII algorithm, a total order has to be generated simultane-
ously on /. For this purpose, a starting partial order on / defined by i < j if and
only if i = j is used when the PACII algorithm begins execution. During all
intermediate stages of PACII this partial order is now successively com-
pleted, using the current set of clusters until, finally, < is a complete order on
I or no more clusters can be joined.

By way of a more formal description, first note that each cluster K that
is generated by PACII will be subset of one of the equivalence classes of the
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transitive closure of the reflexive symmetric relation = defined by
i=j e (i<jorj<i). This equivalence class will be denoted by [K].
Recall that §;; is a notation for the given dissimilarity value between objects i
and j. Denote by M < I” the set of pairs of objects for which the dissimilarity
values are missing. Then, a brief sketch of the PACII algorithm must
emphasize the following steps (where D is a real-valued function on 2/ x 2/ ,
and min and max denote minimal and maximal elements with respect to <):

(S1) Initialize D({i},{j}) = 8, V(@je ’-M;, P= {{i}:iel};
Q= {({i},{iD:j) e M} L{UJ):Je2}; and f({i}) =0, i <i,
VieLNJ)=0,YJe 2. (N(-) counts the number of successors.)

(S2) IfIe Por P2—Q = then stop, otherwise find (K,L)e P> -Q
with minimal D(K,L).

(S3) If K and L are linkable (more precisely, if the Boolean-valued func-
tion linkable defined in Appendix B returns linkable (K,L) = true)
then

If [K]#[L] then complete < such that [K]u [L] is totally
ordered (see Remark 1). Update P = P U {K UL}, AAKUL) =
D(K,L), N(K) =N(K) + 1, and N(L) = N(L) + 1. Forall Je P
compute D(KULJ) (see Remark 2) and let
DJ,KUL)=DKVLJ);,ifD(KULJ ) is missing then update
Q=Q0V{(KULJ),(J,KuUL)).

(S4) Update Q = Q U {(K,L), (LK)}, and go back to (S2).

Remark 1: There are always two plausible strategies for generating < on
[K]U[L]. Let us analyze the first case, max K = max [K] and max L =
max [L]. Here, the maximal elements of K and L are also maximal elements
of their respective classes [K] and [L]. Strategy 1 would be to reverse the
existing (possibly partial) order on [L] and to puti <jforallie Kandje L.
Strategy 2 would be to reverse the existing order on [K] and to put i < j for all
i€ L and j e K. Analogously, in the second case, max K = max [K] and
min L = min [L], we can put i < j forall i € K and J € L, or first reverse both
orders (on [K] and [L]) and then put i < j for all i € L and J € K. The other
cases are similar and are omitted here.

Remark 2: Depending on how D(-,") is determined between clusters,
different versions of PACII are available. The compete-linkage version, e.g.,
would use

max {8;:(i,j) € (KOUL)XJ =M} if(KUL)xJ-M =D,

D(K & Lv’) - missing . otherwise .
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Table 2: Example Dissimilarity Data (Missing Values
Denoted by z) Between Pairs of Objects for I = {1,2,3,4}.

K L D(K,L) relation <
{2} {3} 1 2<3
{1} {3} 2 1<3,2<3
{2,3} {1,3} 2 2<3<1
{2} {4} 3 2<3<1,2<4
{2,3} {2,4} 3 2<3<1,4<2<3
{1,2,3} | {2,3,4} 4 4<2<3<1
Table 3: Intermediate Results of PACII when Applied to

the Data of Table 2.

Note that because of the possibility of missing values, we do not recommend
usage of recurrence formulas (Lance and Williams 1967).
Example 3:

If PACII is applied to the dissimilarity data of Table 2 where missing values
are denoted by x then, e.g., the results presented in Table 3 show how PACII
works.

2.2. The PLSC (Pyramidal Least Squares Classification) Technique

Another approach to pyramidal classification based on incomplete dis-
similarity data could be the following: Solve a constrained optimization
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problem to find a pyramidal dissimilarity d on I that ‘‘best’’ fits the given dis-
similarity data & (with possibly missing values).

Since penalty formulations of constrained optimization belong to the
well-known approaches in cluster analysis and can be adapted to handle miss-
ing values, we will briefly describe the following algorithm that we have
called PLSC (Pyramidal Least Squares Classification). (See, e.g., Arabie and
Carroll (1980), and Carroll and Arabie ( 1983) for their experiences with
penalty formulations of clustering problems, and De Soete (1984), and
Schader and Gaul (1992) for penalty approaches to hierarchical classification
based on incomplete dissimilarity data.)

Two types of iterations merit description here. First, in an outer itera-
tion the PLSC technique starts with an initial total order on / and subse-
quently updates the actual total order using the DD (Doubles Décalages, or
Double Swapping) method (see e.g., Marcotorchino and Michaud (1979, pp.
166-172) or our short description in Appendix C). Second, in an inner itera-
tion, based on the actual total order on /, the PLSC technique solves a penalty
approach to fit a pyramidal dissimilarity d to the given dissimilarity data &
using Powell’s (1977) conjugate gradient procedure with automatic restarts.
(Also see De Soete (1984) for an application of this procedure within a
penalty approach for hierarchical classification.)

A brief outline of the PLSC technique emphasizes the following steps:

(S1) Choose an initial total order < on /. Describe this total order and
the total orders generated in the following steps by a vector
X= (...,x,-j,...) with
Xij € {O,I}, A4 I,j el
Xi =1, Viel (reflexivity),
Xjj+x;; =1, Vije I (antisymmetry and completeness),
Xij + Xjk — Xk L I - i,j,k el (transitivity).
Sety =x,and F = oo,
(82) Solve the constrained optimization problem
Minimize F(d*)= %, (§;- df;)* subject to the constraints
(e P-m
‘fk = d}‘J Xjj Xjk and d}"k = d}k Xij Xjks v ijkel,
dijeR,, dj=0&i=]j, anddj; =d}, Vijel;
e.g., via a penalty approach.
If F(d*) < Fthen update y = x,d” = d*, F = F(d*) and go to (S3);
otherwise go to (S4).

(S3) Take y and (re)start the DD method creating a new total order xpp
fromy. Setx = xpp and go back to (S2).
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(S4) Take x and check whether the DD method can be continued.
If not then stop, with the results y and 47,
otherwise continue the DD method creating a new total order xpp
from x, set X = Xpp and go back to (S2).

One possible initialization for PLSC is the total order resulting from a PACII
application. In that case, the least squares based goodness-of-fit yielded by
PLSC will never be worse than the corresponding PACII value. Within the
outer iteration of PLSC any other sub-algorithm suitable for generating and
updating total orders on / can be incorporated instead of using the DD
method. Note that the decision on how to update/generate total orders on [ is
one of the crucial points in PLSC (as well as in PACII).

3. Monte Carlo Evaluation

Both the PACII and PLSC algorithm have been applied to several data
sets. Additionally, hierarchical classification techniques adapted to tackle the
problem of missing values in dissimilarity data were used for comparison.
Consistent with the labels PACII and PLSC, we use the notation HACII
(Hierarchical Ascending Classification with Incomplete Information) and
HLSC (Hierarchical Least Squares Classification) for the hierarchical coun-
terparts of the pyramidal techniques. HACII is described in Schader and Gaul
(1992) as modification of the well-known linkage procedures that can handle
missing values in dissimilary data. HLSC refers to our version of De Soete’s
(1984) algorithm.

From the many results obtained only some selected findings can be
presented. In this paper results are explained on the basis of an experimental
design in which the following factors were varied: (a) The underlying type of
error-free data (complete ultrametric dissimilarity or complete pyramidal dis-
similarity data) from which the simulation data sets were generated; (b) the
percentage p of missing values removed from the complete data (p = 0%,
10%, 20%, 30%, 40%); (c) the variance o> of random error added to the non-
missing data (o* = 0.0, 0.25, 0.5); (d) the data analysis technique used
(HACII, HLSC, PACII, PLSC). Note that prior to embarking on this design,
the complete data were normalized to unit variance.

In the following example the set of objects to be clustered consisted of
n = 10 elements for each underlying type of data. For each combination of p
and o? twenty dissimilarity data sets were randomly generated for each
underlying model and evaluated by each of the techniques HACII, HLSC,
PACII, and PLSC. Corresponding goodness-of-fit values and their means
were calculated. Note that computational efforts for these calculations
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increase from HACII to PACII to HLSC to PLSC, i.e., PLSC is the most com-
plex algorithm.

Tables 4a and 4b summarize the results for two different types of fit
measures. First, the product moment correlation between the non-missing &,
and the corresponding dj; values — denoted by *‘modified product moment
correlation” (mpmc for short) is given. These results show how the algo-
rithms perform with respect to the available part of the underlying data.
Second, in brackets, the product moment correlation (pmc for short) between
the complete, error-free 8;j — before randomly labeling missing entries —
and the complete d;; values is displayed. With respect to the mpmc values it
should be mentioned that the task of fitting the non-missing part of predefined
data becomes easier when the percentage of missing values increases, and
that, therefore, mpmc approaches to the value 1 for increasing p. This effect
can be compensated by introducing suitable corrections. However, in Tables
4a, b the uncorrected fit values of mpmc are shown to avoid subjective adjust-
ments. The pmc values are added in brackets to allow comparisons with
results published in De Soete (1984). In Appendix D an example is described
which demonstrates that different and, perhaps, misleading judgments could
result if mpmc is not used.

A last point to be mentioned is that dependent on the pattern and per-
centage of missing values HACII and PACII might stop with an output con-
sisting of two or more disjoint subhierarchies or subpyramids, a problem that
cannot occur if HLSC or PLSC is used. In our study — where the percentage
of missing values was restricted to 0%, 10%, 20%, 30%, and 40% — neither
HACII nor PACII applications resulted in subhierarchy or subpyramid solu-
tions. Thus, all outcomes are comparable in this sense.

In the following, we mainly comment those values of Tables 4a and 4b
which are based on the mpmc calculations. Considering some of the results,
we note that if the method used and the percentage p of missing values are
fixed, an increase of the variance 62 of random error — which is one indica-
tor for the degree of deviation from the underlying hierarchical or pyramidal
structure — leads to a decrease in mpmc independent of the underlying type
of data used in this study. This tendency also holds for pme. Independent of
the combination of p and o2, the difference in fit between the hierarchical
algorithms HACII and HLSC, respectively, is always marginal. If, addition-
ally, the output of HACII would have been used as input for HLSC, further
improvements of HLSC's fit may be possible.

The most complex algorithm, PLSC, always shows the best results in
terms of mpmc values.

If 6° = 0 and the underlying type of data are hierarchical dissimilari-
ties, all methods attain maximal fit with respect to mpmc values, i.e., in this
study the available part of the underlying hierarchical structure is recovered
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e2=0
p=0% | p=10% | p=20% | p=30% | p=40%
HACII | 1.0 | 1.0(.99) | 1.0 (.98) | 1.0 (.92) | 1.0 (.85)
HLSC |10 | 1.0(99) |1.0(1.0) | 1.0 (.91) | 1.0 (.86)
PACI | 1.0 | 1.0(.99) | 1.0 (.98) | 1.0 (.95) | 1.0 (.86)
PLSC | 1.0 [ 1.0(.99) |1.0(.98) | 1.0 (.93) | 1.0 (.84)
o? =0.25
HACII | 95 | .91(.94) | .92(.90) | .92(.86) | .92(.84)
HLSC | .95 | .91(.94) | .92(.87) | .92(.77) | .92(.69)
PACII | 93 | .92(.81) | .93(.75) | .94(.69) | .93(.60)
PLSC | 96 | .96(.84) | .97(.15) | .98(.71) | .98(.62)
a? =0.5
HACII | 89 | .85(.86) | .86(.78) | .87(.63) | .87(.60)
HLSC | 90 | .85.(.86) | .86(.79) | .88(.66) | .86(.60)
PACII | .88 | .88(.71) | .88(.66) | .88(.55) | .91(.51)
PLSC | 94 | .94(.73) | .95(.69) | .96(.59) | .96(.52)

185

Table 4a: Results of Monte Carlo Evaluation Starting from
Known Hierarchical Dissimilarity Data: Mpmc and Pmc
(in Brackets) Values of Fit.
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a2=0

p=0% | p=10% p=20% p=30% p=40%

HACII | .93 | .93(.85) | .94(.84) | .94(.83) | .94(.76)

HLSC | .93 | .93(.85) | .94(.84) | .94(.83) | .94(.76)

PACII | 1.0 99(.96) | .99(.95) | .99(.92) | .99(.85)

PLSC |10 | 1.0(.98) | 1.0 (.96) | 1.0 (.94) | 1.0 (.84)

o? =0.25

HACII | .86 86(.78) | .87(.75) | .88(.66) | .89(.63)

HLSC | .86 | .86(.76) | .87(.75) | .88(.65) | .88(.61)

PACII | .91 91(.80) | .92(.78) | .92(.69) | .91(.59)

PLSC | .96 | .96(.83) | .97(.80) | .98(.71) | .97(.61)

c?2=10.5

HACII | .80 80(.71) | .83(.70) | .84(.59) | .84(.55)

HLSC | .81 80(.68) | .84(.70) | .83(.58) | .84(.52)

PACII | 85 | .85(.65) | .87(.68) | .87(.56) | .87(.52)

PLSC | .93 | .93(.70) | .96(.69) | .96(.69) | .96(.49)

Table 4b: Results of Monte Carlo Evaluation Starting from
Known Pyramidal Dissimilarity Data: Mpmc and Pmc
(in Brackets) Values of Fit.
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regardless of the value of p. For o2 > 0 the available part of the original
hierarchical dissimilarities does not fulfill the hierarchical constraints any
longer, and a gap between the mpmc fit values computed for the hierarchical
and the pyramidal solutions appears. This gap widens as o2 is increased. The
mpmc fit values obtained from the pyramidal algorithms are always better
than those from the hierarchical counterparts but it should be noted that con-
clusions with respect to the underlying hierarchy still have to be drawn from
these pyramidal solutions (if one knows that the underlying dissimilarity data
actually describe a hierarchy).

If the underlying type of data describes pyramidal dissimilarities for all
combinations of p and 2, there is a remarkable difference in fit with respect
to the solutions obtained by hierarchical versus pyramidal techniques. PACII
yields better mpmc fit results than the hierarchical algorithms (which perform
similarly as already stated above), and PLSC still exceeds PACIIL Addition-
ally, it should be recalled that the hierarchical solutions obtained by HACII
and HLSC cannot fit underlying pyramidal dissimilarities. Thus, also for
6% = 0 and p = 0%, maximal fit to the available part of the data can only be
yielded by PACII and PLSC, as Table 4b shows.

In practice, nearly all empirical dissimilarity data are of course neither
ultrametric nor pyramidal. Therefore, the random error pertubated data, where
o2 indicates the degree of deviation from an underlying hierarchical or
pyramidal structure, and the results of the methods applied to these data are
mainly of interest. Here, the fit values of the first column of Tables 4a and 4b
give hints as to how the algorithms ‘‘behave™ on complete data. In this case
mpmc and pmc are equal. However, empirical dissimilarity data may be
incomplete. The remaining columns of Tables 4a and 4b give first impressions
of the behavior of the algorithms for different percentages of missing values
in the underlying data. Although the question which measure of fit would be
appropriate when missing values occur (see also Appendix D) may need
further discussion, the Monte Carlo results are of interest per se and give first
insights with respect to the ability of the pyramidal approach to cope with the
data situation discussed.

4. Conclusions

In this paper, the PACII and PLSC algorithms for pyramidal
classification based on incomplete dissimilarity data have been proposed.
Their effectiveness has been evaluated comparing them to each other as well
as to our implementations of their hierarchical counterparts in a Monte Carlo
study. The ability of the pyramidal approach to process such parts of the
available data which hierarchical classification cannot take into account has
been demonstrated, especially in the case of incomplete dissimilarity data
which are neither hierarchical nor pyramidal.
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Figure 3b. Chaining on the Same Index Level within a Pyramid.

Appendix A

““Chaining”’ is a well-known property of clustering algorithms creating
dendrograms of the form shown in Figure 3a, a situation that can also happen
when pyramids are determined. Chaining on the same index level would
occur if tied index values are assigned to the nested clusters. Condition (7b)
prevents chaining of clusters on the same index level because if a situation as
depicted in Figure 3b occurs, one could choose sets K and L as indicated in
Figure 3b but not sets J; # K and J, # K which fulfill K = JinJs.

Appendix B

The Boolean-valued function linkable used in Section 2.1 indicates
whether two clusters K and L can be linked together without destroying the
pyramidal structure of the current set P: linkable (K,L):=KuLeg P and
N(K) <2 and N(L) <2 and border (K) and border (L) and (rightNeighbor
(K,L) or rightNeighbor (LK) or ([K]#[L] and (min K = min [K] or
max K = max [K]) and (min L = min[L] or max L = max LD,
order (K) := AJ € P:K c J and min J < min K < max K < max J
rightNeighbor (K,L):=(min L < min K and max L < max K) and
(min K = min {minJ:J € P and minL < minJ and max L < maxJ/}) and
(max L = max {max J:J/ € P and min J < min K and max J < max K'}).
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Three examples with four objects, where the links indicated by the dotted
lines (if considered) are prevented by a ‘“‘false’’ value of linkable, are shown
below in Figures 4a-4c.

Appendix C

The DD (Doubles Décalages) method used in Section 2.2 successively
to generate new total orders from a given total orderon / = {1, ...,n} can be
described as follows:

(1) Select a maximal stepsize m € {1,...,n—1}. Begin with a total
orderi|<i; <---<i,onl.
(2) Forj=12,...,n-1:
(2a) (‘‘forward’’ décalage) For k=j+1, j+2,..., min
{j + m,n}: Swap i; and i; to obtain a new total order, then
re-swap i; and i.
(2b) (“‘backward’’ décalage) For k=j-1, j—-2,..., max
{j—m,1}. Swap i; and i to obtain a new total order, then
re-swap i; and iy.

Appendix D

If incomplete dissimilarity data have to be used as input for algorithms
designed to tackle the missing values problem one has also to consider which
criteria for the comparison of the solutions obtained one should select. In the
Monte Carlo study described in this paper mpmc (modified product moment
correlation) was used as a fit measure operating on the non-missing part of the
data. For complete data mpmc is equal to pmc (product moment correlation)
and in a simulation situation where the ‘‘true’’ underlying, i.e., the complete
data are known one could argue that the fit should be determined with respect
to the ‘‘true’’ data structure.

The following example describes a simulation experiment where the
““true’’ data structures change in the following manner: Take the dissimilari-
ties §;; of Table 5a as starting point. Here, 40% of the data are missing. The
corresponding entries are denoted by x. Assume that different “‘true’’ data
structures can be described by successively replacing all missing values by
x =0,1,...,20. The non-missing part remains the same regardless of the
value assigned to x.

With the input described in Table 5a, applications of, e.g., HACII and
PACII result in the solutions depicted in Tables 5b und 5¢. The mpmc fit
values are 1.0 for PACII and 0.9408 for HACII (regardless of the *‘true’” data
structure), while the pmc fit values are shown in Figure 5.
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Table 5a: Example Dissimilarity Data with Missing

Values
1 2 3 4 5
110

2(1 0

3|15 3 0
418 6 6 0
5(6 6 6 2 0

Table 5b: PACII Result for the Data given in
Table 5a
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Table 5c:  HACII Result for the Data given in
Table 5a
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Figure 5. Pmc Values for different values of x.

Here, totally different judgments about the performance of both algorithms
would result dependent on the ‘‘true’’ data structure which (normally) neither
the user nor the algorithms ‘‘know’’. Sometimes the results of both algo-
rithms would be judged as acceptable, sometimes the results of both algo-
rithms would have to be rejected, sometimes PACII would be estimated better
than HACII but sometimes worse.
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