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Summary: We present new approaches to the analysis of conjoint data. One
part of this paper deals with classification, another with representation issues.
Both parts start with an overview of available approaches and then introduce
new approaches. A real-world application concerning the introduction of a new
product in the European air freight market shows advantages of the presented
approaches.

1. Introduction

Conjoint analysis is the label attached to a research tool for measuring sub-
jects’ tradeoffs among competing objects via rank order or rating scale re-
sponses to constructed multiattribute stimuli (see, e.g., Green, Srinivasan
(1990)). Surveys on the commercial use of conjoint analysis in the United
States (Wittink, Cattin, (1989)) or in Europe (Wittink, Vriens, Burhenne
(1994)) indicate that, since the first papers on the applicability of this
methodology to marketing problems (see, e.g., Green, Rao, (1971)), con-
joint analysis has become a popular research tool within many applications.

Contrary to early definitions of conjoint analysis and contrary to commercial
usage reported in earlier surveys where nonmetric procedures like LINMAP
or MONANOVA were preferred, more recent surveys show that metric pro-
cedures like OLS (Ordinary Least Squares) applied to rank order or rating
scale responses are most frequently named. As OLS provides similar results
to nonmetric procedures when applied to rank order responses (see, e.g.,
Green, Srinivasan (1978) for respective references) and the part-worth ap-
proach is commonly used for preference modeling (Green, Srinivasan (1990)),
the following presentation will be based on part-worth estimation using OLS:

Let be ¢ an index for N respondents, j an index for n stimuli, v an index
for V attributes, and w an index for W, levels of the v-th attribute. With
this notation, typical conjoint data are (binary) profile data Biiiy ..., Bavwy,
(where Bj;,,, indicates whether stimulus j has level w for attribute v (=1) or
not (=0)) and response data y11,...,y.n (Where y;i describes the observed
preference value for stimulus 7 obtained from respondent z). Model parame-
ters are the respondents’ part-worths uy;y,..., unvw,, which are estimated
in such a way that the least squares loss function

V W,

N n
Z= Zz(yji - ?}ii)z with g’ji = Z Z ijwuivw VJ,E (1)

i=1 j=1 v=1 w=1
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is minimized. Because of

W,

Z Bjuw =1 Vj,'U (2)
w=1
dummy-variable coding can be used for the design matrix B with elements
) 1 Fi=1
B; = B else. U0 = max{v|[I>1 + (W1-1) + -+ 4 (W,-y-1)}, V5, (3)
%0 to Two=1— (14 (Wi-1)+ -+ 4 (Wy-1-1))

which we obtain from the profile data by introducing one intercept column
and omitting one superfluous level column for each attribute.

Since
4 V W,-1 1+ (Wi=1)4-+(Wy—1)
Gii = D tiw, + 2 O Bjww(Uiow —tiow,) = 3. Buci, Vi,i (4)
v=1 v=1 w=1 =1
D e —
=:icy; (W] =1) 4 Wy =1)+w)i

we get OLS estimates (Note that the existence of (E'B)b1 is assumed.)
Y = ((#) = BC with C= ((e)) = (B'B)'B'Y and Y = ((y39) (5)

at the disaggregate level from which respondents’ part-worths can easily be
calculated according to

C1; .
Uiy = { z 7 C(1+(WI—1)+“.+(W"—1_l)+wy duw ?é Wu Vl, v, w. (6)
3 else

Some problems with conjoint analysis applications — even within a so-called
average commercial study (n=16 stimuli, V=8 attributes, W,=... =Wy =3
levels (Wittink, Cattin (1989), Green, Srinivasan (1990))) — are as follows:

Firstly, response data is observed and model parameters are estimated, both
at the disaggregate level. Due to the usage of reduced designs for stimuli
construction, the few degrees of freedom cause a problem. In the aver-
age commercial study mentioned, there are 16 observations (one for each
stimulus) per respondent and 17 model parameters (the intercept and two
coefficients for each attribute) per respondent resulting in overparametriza-
tion. Secondly, due to the few degrees of freedom, the response prediction
for attribute-level-combinations not included in the data collection step may
be insufficient and cause a so-called predictive accuracy problem. Thirdly,
whereas tabular and graphical displays of the resulting part-worths may
be appropriate for applications with few respondents, information overload
problems occur when data from hundreds of respondents has to be analyzed.

In these cases, modified forms of analyses or other graphical display forms
— as discussed in the following parts — may be helpful.
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2. Classification Using Conjoint Data

2.1 Overview

Various classification approaches have been proposed in order to prevent
the above mentioned overparametrization and predictive accuracy problems
with conjoint models at the disaggregate level by combining information
across respondents. Moreover, these approaches have been used to derive
so-called benefit segments (see, e.g., Green, Krieger (1991) for an overview).

At the moment, according to the already mentioned commercial application
surveys, so-called sequential approaches seem to be most popular: Segments
are formed either with or without usage of cluster analysis based on, e.g., re-
spondents’ background characteristics or part-worths estimated at the disag-
gregate level. Afterwards, segment-specific model parameters are estimated
by aggregation or by group level procedures (see, e.g., Moore (1980) for an
overview).

In the newer so-called simultaneous approaches, segmentation parameters
and segment-specific model parameters are simultaneously estimated. Some
of these procedures (e.g., Hagerty (1985), Kamakura (1988), DeSarbo, Oliver,
Rangaswamy (1989), Wedel, Kistemaker (1989)) generalize known cluster-
wise regression procedures (Bock (1969), Spath (1983), DeSarbo, Cron
(1988)) to conjoint analysis applications. The new clusterwise regression
procedure, which will be presented in the next section, differs only with re-
spect to response data description and parameter estimation from known
approaches. Contrary to, e.g., Spith’s model for one-mode one-way re-
sponse data, two-mode two-way response data can be analyzed and the well-
known iterative minimum-distance algorithm - instead of some exchange al-
gorithm — is applied for parameter estimation.

2.2 Tterative Minimum-Distance Clusterwise Regression

2.2.1 The Model: We use the same notation as in the introduction, but add
an index t for T segments or homogeneous groups of respondents. Input
data are again the (binary) profile data B, ..., Buyw, and the individual
response data y1,..., YN

Model parameters are now the segment membership indicators Ay, ... , how,
where hy; denotes whether respondent i belongs to segment ¢ (=1) or not
(=0), and segment-specific part-worths U111, .-, UTVW,. Again, we use a
loss function as given in formula (1), but now the individual response esti-
mates are replaced by respective segment-specific response estimates:
N n N T n
Z =33 (yii = 95)* =23 h 3 (yji — use)? — min! (7)
=1 j=1 i=] t=1 §=1

with
vV w,

T
ﬁjs’ = zhtiujt Vj, 3.1 Ut = Z E ijwutuw Vjatv (8)
=1

v=] w=1
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T N
hi € {0,1} V.4, Y hu=1 Vi, Y hy>0 Vi, (9)
=1

=1
where the segmentation schemes are restricted to nonoverlapping.
2.2.2 Parameter Estimation with Given Segmentation Matriz: For the pro-

posed algorithm we use some computational simplifications concerning pa-
rameter estimation when response data Y, the already mentioned design

matrix B, and, additionally, a segmentation matrix H=((hy;)) are given (see
also Hagerty (1985), Kamakura (1988)):

We get individual response estimates Y=UH and segment-specific response
estimates U=BC by weighting the OLS results obtained from (5):

C = (B'B)"'B'Y H'(HH')™! (10)
N,
= G
The elements of matrix G (the weights) can be easily computed via
L ifhy =1 N
it = { N; d Vt,?. Wlth Nt = Zhﬁ Vt. (11)
0 else i=1

2.2.3 The Algorithm: Qur proposed iterative minimum-distance algorithm
is given in Tab. 1: In the initialization phase we start with design matrix
B and an arbitrary segmentation matrix H. Next, we estimate segment-
specific response data U using OLS estimates based on our dummy-variable
coding at the disaggregate level and the corresponding matrix of weights.
Additionally, the initial loss function value is computed. In the two-step
iteration phase we repeatedly reallocate respondents to segments and esti-
mate segment-specific response data U in order to minimize the loss function
until some stopping criterion is fulfilled. In the final phase, segment-specific
part-worths are computed.

Empirical results obtained so far show that typical problems with the itera-
tive minimum-distance algorithm - like, e.g., the reduction of class numbers
(see, e.g., Spath (1983)) — are not relevant to this setting.

3. Representation Using Conjoint Data

3.1 Overview

As already mentioned in the introduction, problems sometimes occur with
the presentation of conjoint analysis results. Here, the incorporation of MDS
(MultiDimensional Scaling), or specifically multidimensional unfolding, to
derive joint spaces — with acknowledged display power — may be useful.

Several approaches have already been proposed, incorporating, e.g., constrai-
ned multidimensional unfolding (see, e.g., DeSarbo, Rao ( 1986)) or multiple
correspondence analysis (see, e.g., Green, Krieger, Carroll (1987)). The lat-
ter uses Green-Carroll-Schaffer-scaling to display results obtained by usage
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of conjoint analysis and choice simulation. Within other approaches (see,
e.g., Carroll, Green, Kim (1989)), first MDS and then conjoint analysis is
applied to conjoint data. The methodology discussed in the next section
differs from the Carroll, Green, Kim (1989) approach with respect to the
concrete models applied and the additional simulation/optimization phase.

{Initialization phase:}
) 1 Bui -+ Buwy,-1) -+ B --- Bivwy -1)
Set B := : : : .

1 Bui -+ Buwy-1) -+ Bavi - By w, -1)
Set s := 0. Choose an arbitrary segmentation matrix H©® and ¢ > 0.
Set U := B(B'B)~'B'YH©'(HOH())-1,

N T n
Set Z© .= > Al > (ysi — u}‘j’)z.

1=1 t=1 7j=1

{Iteration phase:}
Repeat {Step 1 (Reallocation):}
(s)

P N (I D (2
Set #fp) = 3 1 I Rl = min (O i)
0 else

{Step 2 (Estimation):}
Set U(s+1) .— ﬁ(ﬁ'ﬁ)—lE’YH(8+1)'(H(a+l)H(s+1)’)—1_

N T n
Set Z(+1) .= ZZh&'“) > (ysi — u_s-’,_.’*'l))2 and s :=s+ 1.
=1 t=1 =1
Until  Z() — z(4+1) < ¢,
{Final phase:}
Set C := (B'B)"'B'YH®)'(H@OHE))-1,
f&‘ T+t bt Wy -1)uye I 0 # W,

=it else

Set ujpy 1= Vi, v, w.

Tab. 1: Iterative minimum-distance clusterwise regression: The algorithm

3.2 A Combined MDS/Conjoint Analysis Methodology

3.2.1 The Model: Again, the same notation with N respondents, n stimuli,
V attributes and W,... Wy levels is used, Additionally, we employ j as
an index for 7 competing objects (e.g., brands, products) and p as an index
for r space dimensions. Input data are the already mentioned profile data
B, ..., Bpyw, and the response data y1,...,y.n, but now we use, addi-

tionally, profile data Byj,..., .éﬁvwv for the 72 competing objects.
This time, model parameters are stimulus point coordinates Zilye ey Ty, TE

spondents’ ideal point coordinates vyy, ..., vy, dimension-specific regression
coefficients 3,,...,,, and object point coordinates 11y« oy Biipe

3.2.2 The Algorithm: The algorithm distinguishes three phases, a MDS, a
conjoint analysis, and a simulation/optimization phase as shown in Tab. 2.
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{MDS phase:}
Set dig, = lyj; —yri| V1,7, k.
Estimate stimulus point coordinates X=((z;,))
using (weighted) MDS based on dy,.. ., dynn.
Estimate ideal point coordinates V=((v;,))
using external multidimensional unfolding based on X and Y.
{Conjoint analysis phase:}
Estimate regression coefficients By .-, B, (with B, = (( Bat)))
using OLS via X = (Bg, ---Bg,) based on X and B.

Estimate object point coordinates i:((i;p))

using X := (BS, ---BS,) based on f,,...,4,, and B=((b3)).
{Simulation/optimization phase:}
Estimate shares of choices or other aggregate response measures
using choice simulators.
Find attribute-level-combinations
maximizing share of choices or other aggregate response measures
using optimal positioning methods.

Tab. 2: A combined MDS/conjoint analysis methodology: The algorithm

In the MDS phase, we estimate a joint space representation of the stim-
uli and the respondents applying the INDSCAL-model for MDS and the
GENFOLD-model for external multidimensional unfolding based on the in-
dividual response data Y. In the conjoint analysis phase, we regress the
stimulus coordinates X on the dummy-variables of the design matrix B in
a first step. A second step is used to estimate object point coordinates X
based on the estimated regression coefficients 8,,...,8, and the objects’

design matrix B. As a result of this second phase we have a joint space rep-
resentation of respondents, stimuli, and competing objects. The last phase
— the simulation and optimization phase — can now be used to predict shares
of choices for the competing objects applying conventional choice simulators
or to find suitable attribute-level-combinations for new or modified objects
in the competitive context applying optimal positioning methods.

4. Application to the European Air Freight Market

A major European airline company planned the introduction of a new over-
night parcel service concerning house-to-airport delivery in the European air
freight market. A conjoint analysis application was used in order to analyze
the preference structure of potential customers, to derive benefit segments,
and to find suitable attribute-level-combinations for the new service. Pre-
tests showed that the attributes ’collection time’, ‘agency type’, 'price’ (for
a 10 kg parcel with European destination), ’transport control’, and ’delivery
time’ should be considered (see also Baier (1994), Mengen (1993)).

In total, 150 people responsible for parcel delivery within German companies
sending more than 25 air freight parcels per month within Europe were
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personally interviewed. Typical conjoint data was collected with respect
to a reduced design with 18 stimuli as given in Tab. 3. Abbreviations of
the attribute levels are used as stimulus short names, e.g., the short name
"16C160A10’ of the first stimulus indicates that attribute ’collection time’
has level '16:30’, attribute ’agency type’ has level "airline company’, attribute
'price’ has level '160 DM’, attribute 'transport control’ has level active, and
attribute 'delivery time’ has level '10:30’. Additionally, data on company
characteristics, on return from attribute-level-combinations and attribute-
levels from six competing services (’product A’ to ’product F’) was collected.

attributes

stimulus collection transport | delivery
short name | time agency type price  |control |time

16C160A10 | 16:30 airline company | 160DM | active 10:30
16C200P10 | 16:30 airline company | 200DM | passive | 10:30
161200A13 |16:30 integrator 200DM | active 13:30
161240P13 | 16:30 integrator 240DM | passive | 13:30
165160A12 | 16:30 forwarding agency | 160DM | active 12:00
165240A12 | 16:30 forwarding agency | 240DM | active 12:00
17C160A13 | 17:30 airline company | 160DM | active 13:30
17C240A13 | 17:30 airline company | 240DM | active 13:30
171160P12 | 17:30 integrator 160DM | passive | 12:00
171200A12 |17:30 integrator 200DM | active 12:00
17S200A10 | 17:30 forwarding agency | 200DM | active 10:30
17S240P10 | 17:30 forwarding agency | 240DM | passive | 10:30
18C200P12 |18:30 airline company | 200DM | passive | 12:00
18C240A12 | 18:30 airline company | 240DM | active 12:00
181160A10 |18:30 integrator 160DM | active 10:30
181240A10 |18:30 integrator 240DM | active 10:30
18S160P13 |18:30 forwarding agency | 160DM | passive | 13:30
18S200A13 | 18:30 forwarding agency | 200DM | active 13:30

—

Tab. 3: Reduced design with 18 stimuli in the European air freight market

Application of the presented iterative minimum-distance clusterwise regres-
sion procedure for simultaneous segmentation and estimation led to the re-
sults shown in Tab. 4: For nearly half of the sample, i.e. segments 3 and
4 (’segm.3 (10.0%)’, ’segm.4 (38.7%)’) the attribute ’collection time’ con-
tributes mostly to overall response. Two segments focus on the attributes
‘transport control’ ('segm.2 (17.3%)’) and ’price’ ('segm.5 (14.7%)’). The
five-segment solution was selected on basis of an elbow criterion with re-
spect to the R*-measure with values 0.2413, 0.4645, 0.5305, 0.5868, 0.6336,
0.6579, 0.6832 for the one-, two-, ..., seven-segment solutions (see Wedel,
Kistemaker (1989) for a similar decision).

Next, the available conjoint data was analyzed by the presented combined
MDS/conjoint analysis methodology. For space restrictions, we only discuss
the results from the MDS phase and refer to Baier (1994) for results from the
remaining two phases: A four-dimensional joint space representation with
stimuli’s points and respondents’ ideal points was derived by application of
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INDSCAL for MDS (correlation coefficient R=0.665) and GENFOLD for
external multidimensional unfolding (correlation coefficient R=0.760). For
comparisons the affiliation of respondents to the above derived five segments
(’segm.1’ to ’segm.5’) is indicated by the corresponding segment numbers ('Y
to ’5’) in Fig. 1. From the stimulus short names we can see that ’dimension]’
can be interpreted as collection time dimension, 'dimension2’ as price dimen-
sion, and 'dimension3’ as transport control dimension, whereas ’dimension4’
does not allow such an obvious interpretation. From the ideal point posi-
tions we recognize two groups of respondents, where the respondents of the
larger group are in favour of earlier collection times and the respondents of
the smaller group prefer lower prices.

segm.l | segm.2 | segm.3 | segm.4 | segm.5

attribute [level (19.3%) [(17.3%) | (10.0%) | (38.7%) | (14.7%)
collection[16:30 0.210 [ 0.000 | 0.000 | 0.90T | 0.100
time 17:30 0.316 | 0.004 | 0.696 | 0.237 | 0.026
18:30 0.000 | 0.022 | 0.717 | 0.000 | 0.000

agency |airline company 0.000 | 0.II8 | 0.026 | 0.000 | 0.128
type integrator 0.002 | 0.191 | 0.000 | 0.000 | 0.035
forwarding agency| 0.145 | 0.000 | 0.006 | 0.023 | 0.000

price 160DM 0.148 | 0.I00 | 0.083 | 0.033 | 0.645
200DM 0.062 | 0.038 | 0.049 | 0.015 | 0.166

240DM 0.000 | 0.000 | 0.000 | 0.000 | 0.000
transport [active 0.105 | 0.673 | 0.053 | 0.020 [ 0.053
control |passive 0.000 | 0.000 | 0.000 | 0.000 | 0.000
delivery [10:30 0.286 | 0.000 [ 0.099 | 0.022 | 0.074
time 12:00 0.111 | 0.004 | 0.121 | 0.009 | 0.028
13:30 0.000 | 0.022 | 0.000 | 0.000 | 0.000

Tab. 4: (Standardized) part-worths in the European air freight market

As we can see, both approaches try to overcome the three problems with
respect to conjoint analysis applications as pointed out in the introduction:
Compared to the traditional part-worth estimation at the disaggregate level,
the number of model parameters was substantially reduced which leads to
more degrees of freedom and - hopefully — to better predictive accuracy.
(Note that, e.g., the predictive power of methods at the group level may
be lower than that of methods at the disaggregate level, as shown by, e.g.,
Moore (1980).) Moreover, both approaches provide results in a form that
can be easily communicated.

5. Conclusions

New ways of classification and representation using conjoint data offer ad-
vantages over traditional approaches with respect to various aspects like
overparametrization, predictive power, and communication of results. In
this paper, we have only been able to demonstrate some of these advan-
tages within one application example (see Baier (1994) for a more detailed
description). Further research on comparisons concerning simultaneous vs.
sequential approaches is in preparation.
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Fig. 1: Joint space representation in the European air freight market
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