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Abstract

A new approach for analyzing paired comparison data is proposed which combines
a probabilistic ideal point model with product positioning issues. Unlike traditional
approaches based on paired comparison data the same formulation is used for estimating
a joint space representation of consumer segments and products as well as for determin-
ing optimal (new) product positioning options in a relevant product-market. A Monte
Carlo experiment is presented and real-world coffee market data are used to show
advantages of the new approach. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Product positioning and product design are generally viewed as closely
related important problems in marketing research that deal with the generation
of ‘promising’ options for a firm that plans to extend or modify its existing
product lines, see, e.g., Schmalensee and Thisse (1988), Green and Krieger (1989),
Kaul and Rao (1995) for reviews. ‘Promising’ is typically operationalized using
objectives like, e.g., (expected) additional sales volume, market share or profit for
the firm that would arise if a (new) product could be positioned or designed
according to the generated option(s). A distinction between positioning options
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and design options can be made in so far as positioning options are described
using (perceptual) product attributes that build a basis for consumer’s product
choice decisions (e.g., cheapness, printing quality, or speediness of a laser printer)
whereas design options are stated in terms of the underlying (physical) product
characteristics (e.g., price, linewidth or number of pages per minute).

In the conceptual framework for the generation of such promising options, as
introduced by Shocker and Srinivasan (1974) and extended, e. g. by Kaul and
Rao (1995), four principal stages are distinguished: (i) the definition of the
relevant product-market, (i) the description of the relevant product-market
using (important) product attributes and/or product characteristics, (iii) the
modeling of consumer’s product choice decisions via data collection and para-
meter estimation, and (iv) the generation of positioning and/or design options
via choice simulation and optimization. Various approaches have been pro-
posed in which different methods at each of these stages are applied. However,
as the modeling assumptions across the principal stages typically vary within an
approach, the generated positioning and/or design options suffer from subop-
timality. This is especially true for approaches where paired comparisons form
the major data collection method. There, in the third stage, e.g, LINMAP is
used for deriving joint space representations where it is assumed that alterna-
tives with higher (constant) utility values in the pairs are preferred. Then, in the
fourth stage, search algorithms for generating optimal (new) product positioning
options are applied to these joint space representations that rely on the assump-
tion that the selection of an alternative from a set of alternatives is proportional
to some share of (constant) utility values, see, e.g., Shocker and Srinivasan
(1974), Sudharshan et al. (1987) or Sudharshan et al. (1995).

Our concern in this paper is to present a new approach for optimal product
positioning by analyzmg paired comparison data where the assumptions for
modeling consumer’s product choice decisions in the third stage and for generat-
ing product positioning options in the fourth stage are the same. In the next
section we start with a more detailed description of product positioning and
design issues as basis for the understanding of our approach. After the math-
ematical formulation of our approach in Section 3 we present a Monte Carlo
experiment in Section 4 to show how the new approach behaves with respect
to various performance measures in comparison with a counterpart selected
from known approaches. In an empirical example in Section 5 coffee market
data are analyzed in order to demonstrate additional advantages of the
proposed approach.

2. Principal stages of product positioning and design

The description of the first two of the just mentioned four principal product
positioning and design stages is kept to a minimum while for the last two which
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are of particular interest for the integration of our new approach into this area,
additionally, overviews on models and techniques used in these stages are
provided.

(i) In the first stage, the relevant product market which comprises products
and target segments of the potential competitive environment is identified.
Depending on the objective pursued, different databases and methods for
market definition can be used, see, e.g., Urban and Hauser (1993), (pp. 102) who
discuss approaches based on segmentation and on product substitution.

(i) In the second stage, important (perceptual) product attributes and/or
product characteristics have to be determined that allow a description of the
relevant product market and the corresponding positionings (attribute-level
combinations) and/or designs (characteristic-level combinations) of the existing
products. Standard techniques for deriving the current product positionings
consist in collecting, e.g., property ratings and/or similarity ratings from respon-
dents and deriving low-dimensional attribute spaces with point representations
for the existing products, see, e.g., Shocker and Srinivasan (1979) or Huber and
Holbrook (1979) for comparisons of different techniques which use, e.g.,
(non)metric scaling, factor analysis, or discriminant analysis.

(iii) In the third stage, consumer’s product choice decisions are integrated in
the modeling efforts. Based on Brunswick (1952)’s ‘lens” model, it is assumed that
consumers condense (physical) product characteristics and firms’ marketing mix
efforts to few (perceptual) product attributes on which their product preferences
and (assuming utility maximization as choice principle) their product choice
decisions essentially depend. Therefore, preferential and/or choice data from
respondents are analyzed in order to relate product characteristics via product
attributes and preferences to consumer’s product choice decisions in the product
market under view, see, e.g., Kaul and Rao (1995) for a more detailed discussion.
Mainly two different measurement and modeling approaches for this purpose
can be distinguished: MDS (multidimensional scaling)-based approaches and
CA (conjoint analysis)-based approaches.

The usual procedure in MDS-based approaches is the following: Products are
represented by product points and consumer segments by the so-called ideal
points in the low-dimensional attribute space. Inverse (or negative) distances
between ideal points and product points are assumed to be related to (constant)
product utility values. A product whose point has a smallest distance (with
respect to a set of competing products) to a segment-specific ideal point is
selected by the corresponding segment — as a consequence of utility maximiza-
tion as choice principle. For obtaining these so-called joint space representa-
tions often paired comparison data are collected through repeatedly exposing
respondents to pairs ol products and asking them to select the most preferred
product in the pair (binary paired comparisons as choice data) or to judge
the superiority of the most preferred product in the pair (graded paired compari-
sons or constant-sum comparisons as judgmental data). Paired comparison
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experiments have advantages since this kind of data collection convinces
through task simplicity for the respondents and the ability to capture variation
in consumer’s product choice decisions, see, e.g., Dillon et al. (1993) for a dis-
cussion of advantages and applications to marketing research.

Then, clustering methods and ideal point models are applied for estimating
the joint space parameters. Table 1 provides an overview on ideal point models
for this purpose. The models differ with respect to the analyzed data types,
constraints (where ‘external’ means that product positionings in the attribute
space are known from the second stage just mentioned whereas ‘constrained’
implies that product positionings depend on known product characteristics
according to some functional form) and the estimation algorithms applied.
Newer ideal point models differ from older ones in so far as the allocation of
respondents to segments and the estimation of the segment-specific joint space
parameters is performed simultaneously (e.g., Bockenholt and Gaul, 1989;
DeSoete, 1990; Bockenholt and Béckenholt, 1991; Baier and Gaul. 1996: Wedel
and DeSarbo, 1996) and that product utilities are stochastically modeled assum-
ing either normally distributed segment-specific ideal points (e.g., Béckenholt
and Gaul, 1986: DeSoete et al., 1986; Kamakura and Srivastava, 1986; DeSoete,
1990; Baier and Gaul, 1996) or constant utility values superimposed by additive
random error (e.g., Cooper and Nakanishi, 1983; DeSarbo et al., 1987; DeSarbo
et al, 1987, DeSarbo and Hoffman, 1987; Bockenholt and Gaul, 1988, 1989:
Béckenholt and Bockenholt, 1991; Wedel and DeSarbo, 1993).

It should be noted that from the models in Table 1 only those for analyzing
pick any/n or pick 1/n data provide a straightforward possibility for predicting
choices among larger sets of alternatives, i.e. market shares for existing or new
products. The modeling assumptions used during joint space estimation based
on paired comparisons (i.e., the ‘better’ product from a pair of products is always
selected) can be extended to the pick 1/n context (i.e., the ‘best’ product from
a set of products is always selected). This assumption is called the ‘deterministic’
choice rule. More often, some share of weighted (constant) utility values (the
so-called ‘probabilistic’ choice rule which contains the ‘deterministic’ choice rule
as a special case) has been used. Especially, for product markets with frequently
purchased products and/or for preference modelings at the segment level the
‘probabilistic’ choice rule has proven to be more realistic, see, e.g., Shocker and
Srinivasan, 1979; Sudharshan et al. (1988) and the references therein.

The usual procedure in CA-based approaches differs from the above de-
scribed MDS situation in so far as typically the distinction between product
attributes and product characteristics is neglected in favor of a one-to-one
relation, see, e.g., Kaul and Rao (1995) for stressing this point, and that respon-
dents are asked to evaluate hypothetical products or stimuli and not the existing
products as in MDS-based approaches. The relevant attributes and the levels of
the attributes are restricted to small numbers so that full or fractional factorial
designs can be used for a systematic construction of not too large stimulus sets
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Table 1

Overview on ideal point models for external and/or constrained analyses of judgmental or choice

data

Description of
models

Data types

Constraints

Algorithms applied References

Linear progr.
techniques for
multidim. analysis
of preferences
Logit model for
external preference
analysis

Prob. ideal point
model; wandering
ideal point model

Generalized
unfolding model

Ideal point prob.
choice model

Prob. unfolding
MDS model

Multidim. unfolding
threshold model
Latent class prob.
ideal point model

Latent class
wandering ideal
point model
Latent class
unfolding model

Simultaneous prob.
ideal point model

Simultaneous
segmentation and
product positioning

Paired comp.,
data

Paired comp,
data

Paired comp.
data; graded
paired comp.
data
Rank-order
data: rating
data

Pick 1/n data;

rank-order
data

Paired comp.
data

Pick any/n
data

Pick any/n
data; rank-
order data
Paired comp.
data

Pick any/n
data

Paired comp.
data

Rank-order
data; rating
data

External

External

Internal;
external

External;
constr.

External

Internal;
external;
constr.
External;
constr,
Internal;
external

Internal;
external

Internal;
external;
constr,
Internal;
external;
constr,
Internal;
external;
constr,

Linear progr.

ML, GLS

ML, nonlinear
progr.

ALS, nonlinear
progr,

ML, nonlinear
progr.

ML, nonlinear
progr.

ML, nonlinear
progr.

ML, nonlinear
progr., EM-alg,

ML, nonlinear
progr., EM-alg,

ML, nonlinear
progr,, EM-alg.

ML, nonlinear
progr., CML-alg,

ML, nonlinear
progr., EM-alg.

Srinivasan and
Shocker (1973)
(LINMAP)

Cooper and
Nakanishi (1983)

Bockenholt and
Gaul (1986);
DeSoete et al.,
(1986)

DeSarbo and Rao
(1986)
(GENFOLD2)
Kamakura and
Srivastava (1986)

DeSarbo et al.
(1987), DeSarbo
et al, (1987)
DeSarbo and
Hoffman (1987)
Backenhalt (1989),
Bockenholt and
Gaul (1989)
DeSoete (1990)

Bockenholt and
Bockenholt (1991)

Baier and Gaul
(1996)

Wedel and
DeSarbo (1996)
(LCSTUN)

(ALS = alternating least squares, CML = classification maximum likelihood, EM = expectation
maximization, GLS = generalized least squares, ML = maximum likelihood, Alg. = algorithm,

Comp. = comparisons, Constr, = constrained, Multidim. = Multidimentional,

Prob. = probabilistic, Progr. = programming)
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for data collection. As in the MDS context, paired comparison experiments
belong to the standard data collection methods in CA-based approaches, see,
e.g, Wittink et al. (1994) for a recent survey on commercial applications of
conjoint analysis in Europe, where the paired comparison-based ACA proced-
ure was the most popular one.

The observed response data are analyzed using cluster analysis and regres-
sion-like estimation algorithms at the individual or segment level. Table 2

Table 2
Overview on CA-based estimation technigues for analyzing judgmental or choice data
Description of models  Data types Constraints Algorithms applied References
Nonmetric CA Rank-order External ALS Kruskal (1965)
data (MONANOVA)
Linear progr. Paired comp.  External Linear progr. Srinivasan and
techniques for data Shocker (1973)
multidim. analysis (LINMAP)
of preferences
Metric CA Rating data External OLS Carmone et al,
(1978)
Logit analysis; Pick I/ndata  External ML, nonlinear Louviere and
choice-based CA progr. Woodworth
(1983), Sawtooth
(1993)
Hybrid CA analysis Rank-order External OLS Green (1984)
data; rating
data
Adaptive CA Rating data, External OLS Johnson (1987),
paired comp. Sawtooth (1994)
data (ACA)
Hierarchical benefit Rating data External ALS Kamakura (1988)
segmentation
Clusterwise regression Rating data External ALS Wedel and
Kistemaker (1989)
Fuzzy clusterwise Rating data External ALS Wedel and
regression Steenkamp (1989)
Latent class CA Paired comp. External ML, nonlinear DeSoete (1990)
data progr., EM-alg,
Latent class Rating data External ML, nonlinear DeSarbo et al.
metric CA progr., EM-alg. (1992)
Concomitant variable Rank-order External ML, nonlinear Kamakura et al.
latent class CA data progr., EM-alg, (1994)
Latent class Pick 1/ndata  External ML, nonlinear DeSarbo et al,
choice-based CA progr., EM-alg, (1995)

(ALS = alternating least squares, EM = expectation maximization, ML = maximum likelihood,
OLS = ordinary least squares, Alg, = algorithm, Comp. = comparisons,
Multidim. = multidimensional, Progr, = programming)
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provides an overview on respective techniques. As with the ideal point models
within the MDS-based approaches. newer estimation algorithms can be distin-
guished from older ones through their ability to determine the allocation of
respondents to segments and segment-specific model parameters simulta-
neously, see, e.g., Kamakura (1988), Wedel and Kistemaker (1989), Wedel and
Steenkamp (1989), DeSoete (1990), DeSarbo et al. (1992), DeSarbo et al. (1995)
and Kamakura et al. (1994). The resulting segment-specific partworth functions
or estimated preferences for attribute-levels can then be used to predict (con-
stant) utility values for the existing products through adding the respective
partworth values. For predictions of shares of choices similar rules as described
for the MDS-based approaches can be used.

The modeling of consumer’s product choice decisions developed so far also
provides a basis for the evaluation of attribute-level combinations (positioning
options) for new products. For this purpose, (constant) utilities are calculated in
the same way as for existing products and (simulated) shares of choices for the
new product are estimated using the already mentioned ‘deterministic’ or
‘probabilistic’ choice rules.

More cumbersome from a practical point of view is the evaluation of position-
ing options with respect to profit and/or the evaluation of design options
with respect to share of choices, sales volume, market share or profit, since in
these cases the relations between marketing variables and product character-
istics (that build up main parts of the product’s variable costs) and the
positionings in the attribute space (that make up consumer’s product choice
decisions) must be known. Here, especially in more technical product categories,
sometimes linear relations between product attributes and product character-
istics are assumed. Given that the number of product characteristics is not
too large, regression analysis can be used to estimate the transformation coeffi-
cients, e.g., Narasimhan and Sen (1989) demonstrated in an application that
(perceptual) attributes like copy quality in copiers are linearly related to (phys-
ical) characteristics like linewidth, darkness, gloss, spots, or streaks. Another
possibility can be an application of constrained ideal point models as listed in
Table I where the product coordinates in the attribute space are linear combi-
nations of product characteristics, However, if the number of product character-
istics is too large, a regression-like estimation of the transformation coefficients
seems not to be appropriate. In such cases. research concerning methods
incorporating engineering experience and experimental studies is still going on,
see, e.g., Hauser and Clausing (1988), Akao (1990), and Gustafsson (1996).
Remember that these problems are less valid for CA-based approaches, since
here (as mentioned before) typically a one-to-one relation between product
characteristics and product attributes exists. Carroll (1997) assumes that
this ‘advantage’ from a practical point of view is one of the major reasons
why CA-based approaches are currently more popular than the MDS-based
counterparts,
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Table 3
Summary on optimal product positioning techniques

Description of Number of Choice  Solution Algorithms References
objectives products rules principles  applied

Techniques in MDS-based approaches

Share of choices; Single Det.; Heuristic  Grid search; Shocker and
market share product prob. nonlinear Srinivasan (1974)
progr.
Share of choices Product Det. Exact Geometric Albers (1977)
line approach (SILOP)
Share of choices: Single Det. Exact Geometric Albers and
market share product approach Brockhoff (1979)
(PROPOSAS)
Share of choices; Single Det. Exact Geometric Zulryden (1979)
market share product approach (ZIPMAP)
Profit Single Det.; Heuristic:  Nonlinear Bachem and Simon
product prob, exact progr.; branch (1981)
& bound
Share of choices Single Det. Heuristic  Geometric Gavish et al, (1983)
product approach
Share of choices; Single Det.; Heuristic  Nonlinear Sudharshan
market share product prob. progr. et al. (1987)
(PRODSRCH)
Share of choices; Product Det,; Heuristic - PRODSRCH  Sudharshan
market share line prob. (modified) el al. (1988)
(DIFFSTRAT)
Share of choices; Single Det.; Exact —+PROPOSAS  Albers (1989)
profit product prob. (modified)
Profit Single Det.; Exact Game-theoretic  Choi et al, (1990,
product prob. approach 1992)
Profit Single Det.; Exact Game-theoretic  Horsky and Nelson
product prob. approach (1992)
Share of choices; Single Det.; Heuristic  — PRODSRCH  Sudharshan et al,
sales volume product prob., (modified) (1995) (NICHER)
Techniques in CA-based approaches
Sales volume Single Det.; Heuristic  Integer progr. Zufryden (1979)
product prob,
Sales volume; Single Det.; Exact; Enumeration; Green et al. (1981)
market share; profit  product prob. heuristic  branch (POSSE)
& bound;
nonlinear
progr.
Profit Product Det. Heuristic  Greedy:linear Green and Krieger
line progr. (1985) (DESOP)
(relaxation)
Share of choices Single Det. Heuristic  Dynamic progr.  Kohli and
product heuristic Krishnamurti

(1987)
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Table 3. Continued

Description of Number of Choice  Solution Algorithms References

objectives products rules principles  applied

Welfare; profit Product Det, Heuristic Reverse-greedy  Dobson and Kalish
line (1988)

Welfare; sales Product Det. Exact Linear progr;  McBride and

volume; profit line branch Zufryden (1988)

& bound

Share of choices: Product Det. Heuristic Dynamic progr. Kohli and Sukumar

profit line heuristic (1990)

Market share; Product Prob. Heuristic Divide-and- Green and Krieger

profit line conguer (1992) (SIMOPT)

Profit Single Det.; Exact Game-theoretic Choi and DeSarbo
product prob approach (1993, 1994)

Profit Product Det, Heuristic  Greedy Dobson and Kalish
line (1993)

Profit Product Prob. Heuristic Advanced Gaul et al. (1995)
line greedy (PROLIN)

Share of choices Single Det. Heuristic Genetic Balakrishnan and
product algorithms Jacob (1996)

(Det. = deterministic, Prob, = probabilistic, Progr. = programming)

(iv) In the fourth stage, the product choice model developed in the previous
stage is used to generate product positioning and/or design options that maxi-
mize some prespecified objectives. If, e.g., the generation of a positioning
option for a new product is desired that maximizes the new product’s share of
choices, a position that maximizes the simulated share of choices has to be
found. Various techniques have been proposed for this purpose. Table 3 pro-
vides a summary on these efforts. The different techniques are distinguished
with respect to objectives, number of products, choice rules, solution principles,
and the algorithms applied. We can see that Shocker and Srinivasan (1974)'s
early formulation of the problem from an MDS-based perspective was a start-
ing point for other researchers to develop enumerative or heuristic techniques
concerning optimal positionings for single products or product lines.
Some newer approaches incorporate game-theoretic considerations for
modeling competitive reactions with respect to sets of  (established)
products. Concerning CA-based approaches, early formulations of this problem
were given by Zufryden (1979) and Green et al. (1981), newer techniques
focus on computational problems to determine optimal positionings for
single products or for product lines. As with the MDS-based approaches,
some newer methods use game-theoretic formulations to model competitive
reactions.
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One should keep in mind that in both CA- and MDS-based approaches the
estimation of the preference model parameters (e.g., the ideal point coordinates
within MDS-resp. the partworth functions within CA-based approaches) and
the prediction of the shares of choices [or existing and for new products rely on
different modeling assumptions when paired comparison data are used. In the
Monte Carlo experiment later on, we will show how this usage of different
modeling assumptions influences the accuracy of the choice predictions com-
pared to our new approach, for which the same model formulation is used for
parameter estimation and for optimal positioning. In the following, this ap-
proach, in which Baier and Gaul (1996)'s paired comparison based simultaneous
probabilistic ideal point model formulation is generalized in order to predict
shares of choices among sets of products (though retaining paired comparisons
as data collection method), is described.

3. New approach
3.1, Model formulation

We represent a set § of products by points in an r-dimensional space with
deterministic coordinate vectors x; = (x;;,..., x;), je§, determined e.g. by
preliminary analyses of perceptual data in the first two product positioning and
design stages of the conceptual framework.

In the same space, we describe T' consumer segments by ideal points with
stochastic coordinate vectors v, = (v,q, ..., v,) (t = 1,..., T) which follow multi-
variate normal distributions with mean g, = (4, ..., pt,) and covariance matrix
IJ = ((arpp’nrxr-

As in traditional approaches for product positioning and design we assume
that consumers are allocated to consumer segments. that inverse distances
between segment-specific ideal points and product points reflect segment-speci-
fic product utilities, and (as a consequence of utility maximization as choice
principle) that smallest distance with respect to a set of competing products
implies choice. Additionally, it is assumed that consumer’s product choice
decisions vary across consumers, segments and product choice situations and
that consumers sample an ideal point from their corresponding segment-specific
ideal point distribution in each concrete choice situation. Consequently, we use
the notation

Rjs={zeR'|(z —x)(z — x)) < (2 — %) (2 — x1) Vke S} (1
for what we have called preference subset of product j (which contains all

points for which j is the closest product with respect to S) and calculate the
probability that consumers from segment ¢ prefer product j to any other product
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from S by
Puiis = Pr(v,e Ry5) = f flz)dz (2)
zeR;s
with
. 1 1 ry—1
W) = - —p)E (2 —m) 3
fiz) Jande) exp( — 3(z — w)'E 'z — ) 3)

Using /, as the relative size of segment ¢ (Z;": A= 1) we get

§
Pis = Z MPjis (4)
t=1

as overall share of choices for product j.

Note that Eq. (2) generalizes well-known formulations from paired compari-
son-based probabilistic ideal point models, see, e.g., Bockenholt and Gaul
(1986), DeSoete et al. (1986), DeSoete (1990), and Baier and Gaul (1996). In the
case |S| = 2 a closed-form solution of the probability

(3)

XX — X}xj — 200, — x;) sy
Peitiiw = Pr(v,e Ry ;, =¢(‘ - )
4| {Jk} 1€ Rjitin) \/4 (e —x)' 2y (x — X))

that product j is preferred to product k is possible. (¢ denotes the standard
normal distribution.)

For |S| > 2 an analytical solution for the probability expression (2) is not
known, but hypercube approximations — where the centroid of a hypercube
indicates whether all points of the hypercube are assumed to belong to Rjs or
not — and approximations of the multivariate normal distribution can be used
for evaluations, see, e.2.. Gupta (1963) and Krishnaiah (1980). The hypercube
approximation is described in more detail in the appendix, see also Kamakura
and Srivastava (1986)'s application of Clark’s rule in their (unsegmented) ideal
point probabilistic choice model formulation for analyzing pick 1/n data as an
alternative possibility for approximation.

3.2. Daia collection and parameter estimation

Now. the data collection and parameter estimation part of the new approach
can be described as follows:

We use for the tth segment-specific ideal point a multivariate normal distribu-
tion with parameter vector @, = (i, ..., My Ty11s G120 -..+ Oy FOT estimating
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the vector of ideal point parameters € = (0',..., 07). paired comparisons
are collected from N respondents. As a result we get — with i as an index
for respondents and j, k as indices for products — a data array ¥ with
elements

1 if respondent i prefers product j to product k,
Vi = Vi, j, k. (6)

0 otherwise,

Note that this notation allows for missing values in the data. As segment-specific
model parameters are needed, an additional, possibly unknown non-overlap-
ping segmentation matrix H with elements

Vi, i (7)

; {I if respondent i belongs to segment t,
i =

0 otherwise,

is introduced from which we get the relative segment sizes 1, = ¥ . \h,/N.

For obtaining estimates of 0 and H, sequential techniques, where the
respondents are a priori assigned to segments by clustering methods (e.g., by
Ward- or k-means-clustering based on the paired comparison data) before @ is
computed, and simultaneous techniques, where @ and H are jointly determined,
are possible.

A computationally tractable example for a more advanced simultaneous
technique is based on the classification maximum likelihood method, see, e.g.,
Bryant and Williamson (1978, 1986). In this context, estimates of § and H are
obtained by minimizing the negative log-likelihood function

z
—InLOHY)= =} Y Y npuln(py,e) (8)
t=1 jeS keS\|j}
with
N T
=3, hivie Yt gk, hye{O1}, Vi, i, Y hy=1,¥i. (9)

Here, n,, denotes the number of respondents in segment t who prefer product
J to product k. Note that in Eq. (8) an independent sampling of ideal point
coordinates across segments, respondents, and choice situations is assumed as in
other papers that derive maximum likelihood estimates from paired comparison
data, see, e.g., Bockenholt and Gaul (1986), DeSoete et al. (1986), DeSoete (1990),
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and Baier and Gaul (1996). Since

T N
—InL(0, H|Y) =— _Z ¥y (Z hrf.\’ijk)lﬂ(ﬂrjuj.kd

=1 fe§ keS\[j] \i=1
hi Y Wik In(peji5))s (10)
1 JES keS\{i}

=: Ly(6,]Y)

I

|
M=
M=

1:x

L}

"]

the estimation of the model parameters can be simplified according to the
algorithm shown in Table 4, consisting of an initialization phase and a two-step
iteration phase where the actual estimates of @ and H are alternatingly im-
proved. Step 1 of the algorithm’s iteration phase is similar to the estimation
method of Béckenholt and Gaul (1986)’s and DeSoete et al. (1986)'s probabilistic
ideal point model, where for a given segmentation matrix H, estimates of 0 are
obtained. In this case we denote the log-likelihood function by In L(0|H, ¥). In
step 2, H is improved by allocating respondents to segments in such a way that
Eq. (10) is minimized. Fifty restarts are used to consider local optima.

For model selection, values of AIC (Akaike Information Criterion, see
Akaike, 1977) of the type

AIC = — 2In L(0. HY) + 2NEP, (11)

Table 4
Algorithm for parameter estimation

{ Initialization phase:}
Set I = 0, Choose an arbitrary (non-overlapping) segmentation matrix H'%, initial estimates 8% of
the vector of ideal point parameters, and a small § > 0,

{Iteration phase:|

Repeat {Step 1 (Estimation):}
Set I =1+ 1. Compute a new estimate 6" of @ by minimizing
= In LOH"~ ", ¥)
w.r.t. @ using some iterations of a quasi-Newton procedure
starting from @ ',
{Step 2 (Reallocation): |

I ift= max {f|Ly0"Y)= max {Ly 0PV},

Set hifh = { =g, LT Vi

= 10.T
0 otherwise,

Until — In L@ HYY) > — In L0~V H'V|Y) - 6,
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or of CAIC (Consistent Akaike Information Criterion, see Bozdogan, 1987) of
the type

CAIC = — 2InL(0, H)Y) + (1 + In NO)NEP, (12)

have been used. Here, NEP denotes the number of effective parameters, NO the
number of observations, and  the maximum likelihood estimate of @, all with
respect to some model under consideration. Even though the underlying regu-
larity conditions for AIC and CAIC across different segmentation matrices
H are not satisfied, these formulae have been proposed and are applied here in
the same sense, see, e.g., Bozdogan (1987, 1993), and Wedel and DeSarbo (1993).
Note that this external approach with fixed product coordinates does not suffer
from the usual indeterminacies of MDS-type models. The number of effective
ideal point parameters can be calculated using NEP = Tr(r + 1)/2.

3.3. Choice prediction and generation of positioning options

Based on the estimated joint space parameters (shares of) choices for existing
products can be predicted using Eqs. (2) and (4). Also, an extension of the just
described situation to optimal positioning issues is possible: Let us assume that
the product set S is enlarged by a new product 0 to S, = Su{0}. Using

T 0y
Pu|s.,{xu) = Z /.~rPro|s,.(xo) = Z Ay —[ flz)dz (13)
! = 2Ry, (x0)
with
Rojs,(x0) = {2 R"|(z — x0)'(z — %0) < (2 — x1)'(z — x4) VkeSo}, (14)

a calculation of the share of choices for the new product 0 positioned at the point
X = (Xgy. ..., Xo,) can be performed. As in other optimal positioning proced-
ures it is assumed that the new product can be made similarly well-known and
distributed in the market under consideration as the existing products. Optimal
positioning options for the new product can be obtained through maximizing
Eq. (13) using a standard hill-climbing algorithm of nonlinear programming.
Again, fifty restarts are used to tackle the problem of local optima.

4. Monte Carlo experiment

Whenever a new approach is presented comparisons with existing counter-
parts can be used to get a feeling how the proposed methodology ‘behaves’ and
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to demonstrate whether and to which extent improvements can be reported.
Although several contributions are known that deal with such comparisons in
the here described area we just refer to Sudharshan et al. (1987) and Vriens et al.
(1996) because the design of the following Monte Carlo experiment was mainly
influenced by these papers.

In Sudharshan et al. (1987)'s comparison of four MDS-based (heuristic)
techniques for optimal product positioning - a grid search algorithm, PROPO-
SAS (Albers and Brockhoff, 1979), GHS-IV ( Gavish et al. (1983)) and the own
PRODSRCH method - were judged with respect to their ability to find posi-
tioning options that maximize share of choices. Additionally, Vriens et al.
(1996)'s Monte Carlo comparison of various metric conjoint segmentation
methods is a well-known example from the CA-based perspective.

Adopting much from the design of the studies just mentioned, a total of 320
data sets was generated according to a full factorial design with the following
five factors: number of (simulated) respondents (100 and 200), number of
products (8 and 10), number of (equally sized) segments (2 and 4), number of
attributes (2 and 3) and heterogenity within segments (0.5 and 1.5 variance).
Note that heterogenity allows to take into account varying degrees of inconsist-
encies in the generated data, e.g. intransitivities within the paired comparison
experiment. Each factor-level combination was replicated 10 times. Segment-
specific ideal points were assumed to be independently and identically normally
distributed across attributes.

For the generation of each data set the following steps were used: First, for
a product market with specified number of products, number of segments and
number of attributes the product point and (expected) segment-specific ideal
point coordinates were randomly drawn from a prespecified range (the interval
[ — 3, 3] was selected). Second, for the specified number of respondents (ran-
domly assigned to equally sized segments) paired comparison data and ten
holdout choices were generated through sampling an ideal point from the
corresponding segment-specific ideal point distribution for each paired com-
parison and each holdout choice and assuming that the product with the nearest
product point in the pair resp. in the whole set of products is selected.

Each generated data set was analyzed using the new approach and a tradi-
tional counterpart. In the new approach, the segmentation scheme and the
segment-specific model parameters were estimated simultaneously according to
the description of Section 3. To prevent local optima, 50 random starts were
used. Shares of choices for the existing products were estimated according to
Egs. (2) and (4). Finally, an optimal positioning was estimated using Eq. (13). In
the traditional counterpart, the paired comparison data were clustered using
a k-means procedure before segment-specific ideal points were estimated by the
probabilistic ideal point model from Table 1. Again, 50 random starts were
used. Then, shares of choices for the existing products were predicted according
to the ‘probabilistic’ choice rule. The (constant) utility weighting parameter was
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estimated so that the root-mean-squared error between the predicted shares of
choices pjs (jeS = {1,...,m}) and the (true) shares of choices according to the
holdout choices from the data set pjjs was minimized (* denotes true values in
the Monte Carlo simulation.). Finally, an optimal positioning option was
estimated using a standard nonlinear programming technique with fifty random
starts for deriving optimal new product positionings.

The results from the two approaches were evaluated according to the follow-
ing seven performance measures PM, to PM,, where — before evaluation
~ segments in the derived solutions were permuted in such a way that the
corresponding segment-specific values were well matched:

e PM, = \/if;,z;,:l(u,,, — ut)?/Tr (root-mean-squared error between the
true and estimated expected segment-specific ideal point coordinates),

e PM, = \E’; 13 = 1(G1pp — Op)?/ Tr (root-mean-squared error between the
true and estimated variance parameters for describing the distribution of the
segment-specific ideal points),

o PMy=3" S\ hyhif/N (percentage of correctly classified respondents,
which is the share of respondents that are assigned to their true segments),

e PM, = /Y1 (pjjs — p}js)zfm (root-mean-squared error between the true
and estimated shares of choices),

o PM; = /S 5" (pys — Piis)’/ Tm (root-mean-squared error between the
true and estimated segment-specific shares of choices),

e PMy; = JZTzl{.xop — xi,)*/r (root-mean-squared error between the ‘true’
and estimated coordinates for the optimal positioned new product), and

® PM; = /(pojs, — pmsﬂ)2 (root-mean-squared error between the ‘true’ and
estimated share of choices for the optimal positioned new product).

For PM, and PM, ‘tru¢’ (in quotation marks) means that these values were
obtained by applying the new approach on the basis of the true model para-
meters mentioned for the description of the performance measures PM; to PM ;.

PM,, PM,, and PM; help to explain what could be called ‘parameter
recovery' of the ideal point model used, PM, and PM5 are related to ‘choice
prediction’ with respect to the existing products under competition, while PM g
and PM- give hints concerning ‘new product detection’. Of course, our new
approach should show advantages with respect to new product detection and
choice prediction while significant differences concerning parameter recovery
were of minor interest.

As outcome of the Monte Carlo experiment, 640 observations for each of the
seven performance measures (from 320 generated product-markets according to
the 32 factor-level-combinations with ten replications, analyzed by the two
approaches) were available in order to show differences across approaches and
factors used for the generation of the product-markets. Table 5 shows mean
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Table 5
Mean values for the performance measures under different approaches and outcomes of factors

PM, PM, PM, PM, PMs PMy  PM,

Approach Trad. New 02288 03202 09537  00382° 0.0705" 0.7244*  0.1260"
02236 03309 09558 00121 00238 01596 00219

Respond. 100 0,2574* 03953 09542 0.0262 00490 04919  0.0766
200 0.1949 02558 09553 00241 00454  0.3921 0.0713

Products 8 02798  0.3872° 09456" 0.0268" 00514" 0.5084" 0.0720
10 01725 02639 09638 00235 0.0430 03756 00758

Segments 2 0.1574* 02431  09777* 00263  0.0400" 04954  0.0915
4 02949 04080 09318 00240 00543 03887  0.0564

Attrib, 2 0.2068" 02747"  0.9445" 00262  00498" 04596 00754
3 02455 03764 09650  0.0241 00445 04245 00725

Heterog. Hom. Het. 0.1942%  0.1753"  0.9639"  0.0232* 0.0440" 0.3696" 0.0591"
02582 04758 09456 00271 00503 05144  0.0888

“Indicates that the difference between the two means is significant at the 0.01 level.

values for the performance measures under different approaches and outcomes
of factors while in Table 6 the mean values for the performance measures under
different approaches by outcomes of factors are depicted.

Additionally, for the five Monte Carlo factors and the approaches as main
effects as well as for those first-order interaction effects in which approaches
constitute one of the interacting parts, F-test results with respect to all perfor-
mance measures were checked in an ANOVA context and are — as they are in
agreement with the information contained in Tables 5 and 6 — not reported.

Altogether, the message from the Monte Carlo experiment is pretty clear:
With respect to choice prediction (PM 4, PM ) and new product detection (PM g,
PM) the new approach performs significantly (at the 0.01 level) better than the
traditional counterpart. For these performance measures also the first-order
interaction effects reveal significant (although not all at the 0.01 level) differences
and Table 6 shows that application of the new approach contributes more than
the variation of the factors for generating the product-markets to overall
improvements. With respect to parameter recovery (PM,, PM,, PMj) the
hypothesis that the two approaches perform equally well cannot be rejected.
Also, all first-order interaction effects do not show significance. This supports
our assumption that both approaches are equally well suited for the parameter
recovery of the underlying ideal point model (ie., we did not select a “poor’
traditional approach to gain advantages for our) and that a main reason for the
better performance of the new approach is due to the fact that the assumptions
for modeling consumer’s choice decisions and for generating product position-
ing options are the same.

To conclude, the new approach outperforms the traditional counterpart with
respect to the prediction of shares of choices for existing and new products as
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well as with respect to the detection of optimal positioning options for new
products. We leave an interpretation of further results contained in Tables 5 and
6 to the reader. Instead, in the following section, we show how the new approach
works based on a subsample from a real-world situation which we are allowed
to use for demonstration purposes.

5. Application

Paired comparison data from a sample of 56 respondents, who were asked
for preference judgments related to 8 coffee brands denoted by ‘brand A’
to *brand H', are used as well as individual perceptual judgments for each
brand with respect to the properties ‘special flavor’, *high quality’, ‘good taste’,
‘unblended’, ‘no bitter constituent parts’, ‘mild’, ‘decoffeinated’. ‘bitter’,
and ‘a blend of different types. Two-dimensional and three-dimensional
representations of the brands in a perceptual space via principal component
analysis with varimax rotation constitute starting points for the following
external analyses. The first two factors explained 78.52%. the first three
factors 90.01% of the variance of the (aggregated) perceptual data. The
new approach described in Section 3 was used to determine segmentation
schemes for the respondents, (expected) segment-specific ideal points
and covariance matrices for T = 1, 2,..., 10 segments. Table 7 shows the re-
sults in terms of - In L, AIC, and CAIC. We see that the CAIC values indicate
that the two-dimensional representation and the 5-segment solution should be
preferred.

In Fig. 1, the 5-segment solution of our approach is visualized in a joint space
in which property vectors, preference subsets of the brands, and 75%-confidence
regions for the expected ideal points help to explain the underlying situation.
The confidence regions refer to the maximum likelihood estimates of the
segment-specific ideal point distribution parameters. Some obvious results are:
The first factor combines properties as ‘mild’, ‘no bitter constituent parts’, and
‘decoffeinated’ in its positive direction at the right hand side while ‘bitter’
explains its negative direction. The second factor describes a quality dimension
with properties as ‘high quality’, ‘good taste’, ‘special flavor’ and to some extent
‘unblended’ in its positive direction and ‘a blend of different types' in the
opposite direction.

‘Brand D", "brand G, and ‘brand B’ are rated highest on the positive direction
of the first factor, ‘brand H' and ‘brand G’ are to a much higher extent than the
other brands characterized by the negative direction of the second factor, and so
on. From the expected ideal point coordinates and their 75%-confidence re-
gions we get an impression concerning the segment-specific preferences of the
respondents, e.g, ‘segm.l” likes brands with higher ratings on the positive
directions of the first and second factor while ‘segm.2’ accepts brands with
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Table 7
Summary of selected analyses using the new approach

T r NEP —InL AIC CAIC
I 2 4 2614 530.7 550.7
2 2 8 2214 4588 498.8
3 2 12 183.7 191.3 451.2
4 2 16 1723 176.6 456.5
5 2 20 154.3 348.6 4484
6 2 24 144.1 3362 356.0
7 2 28 131.0 3180 4578
8 2 32 124.4 3128 472.6
9 2 36 1215 315.1 494.8
10 2 40 115.6 3111 510.8
T r NEP —InL AIC CAIC
1 3 6 252.1 516.1 546.1
g 3 12 202.7 4294 489.3
3 3 18 176.6 389.1 479.0
4 3 24 167.7 3833 503.1
5 3 30 150.7 361.4 511.2
6 3 36 140.1 3522 5319
7 3 42 128.8 341.6 551.3
8 3 48 1239 343.9 583.5
9 3 54 118.6 3453 614.8
10 3 60 112.7 345.3 644.8

N = 56: NEP = 2Tr; underline denotes best performance.

higher ratings on their opposite directions. The preference subsets of the brands
support these findings.

Now, the formulation of our approach described above allows the prediction
of shares of choices for the existing brands according to Egs. (2) and (4). The
results are shown in Table 8 as segment-specific and total values. We see — what
we already know from Fig. 1 — that ‘segm.2’ is ‘nearest’ to ‘brand H' in terms of
segment-specific shares of choices but the new approach is flexible enough to
incorporate the fact that, e.g., ‘brand A’, ‘brand B'. and ‘brand G’ can attract 7%,
8%. and 8% of the choices of ‘segm.2".

An answer to the interesting question, where a new product could be (opti-
mally) positioned, is given by Fig. 2 and Table 9. The lines of the contour plot
indicate the shares of choices reachable when a respective positioning option for
a new product is selected. A comparison of Tables 8 and 9 shows that ‘segm.1’
and ‘segm.3’ or — in other words — mainly ‘brand E’, ‘brand B, and ‘brand D’
contribute to the share of choices for the new product when the optimal
positioning option is selected.
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Fig. 1. Joint space solution with property vectors. brand points and expected segment-specific ideal
points with 75%-confidence regions as well as preference subsets of the brands.

Predictions of this kind assume - as already mentioned in Section 3 - that the
new product is similarly well-known and distributed in the market under
consideration as the established brands, a situation which usually highly de-
pends on the activities (spendings, time) of the introducing enterprise. Thus, the
maximum value of 12% for the share of choices of the new product in Table 9
can be regarded as an upper bound obtainable under favorable conditions.

To conclude, the results of the empirical example demonstrate that the new
approach allows the prediction of shares of choices for a new product for
various positionings. The share of choices for the optimal positioning option as
well as for other options can be regarded as an upper bound. Adjustments have
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Table §
Predicted shares of choices for the brands according to Fig. |

Segm. 1 Segm.2 Segm.3 Segm 4 Segm.5

(26.8%) (19.6%) {17.9%) (10.7%) (25.0%) Total
Brand A 5% % 1% 0% 38% 12%
Brand B 19% 8% 37% 4% 4% 15%
Brand C 0% 4%, 0% 0% 43% 12%
Brand D 10% 0% 41% 2% 0% 10%
Brand E 41% 0% 1% 0% 10% 15%
Brand F 25% 0% 2% 0% 4% 8%
Brand G 0% 8% 8% 90% 0% 13%
Brand H 0% T3% 0% 4% 1% 15%
Total 100% 100% 100% 100% 100% 100%

to be performed with respect to the fact that the new product still has to reach
the strength of established products already existing in the market.

6. Discussion

The description of the principal stages of product positioning and design in
the beginning of this paper has revealed that a combination of, e.g., methodo-
logy with respect to ideal point models from Table | and optimal product
positioning techniques from Table 3 should be helpful for the introduction of
new products. In our new approach a model formulation was presented that
relates a probabilistic ideal point model with positioning issues and can be used
for as well parameter estimation as choice prediction and detection of position-
ings for new products. In a Monte Carlo experiment it was demonstrated that
our approach competes favorably with a counterpart in which methodology
from Tables 1 and 3 is used in a traditional way. The traditional counterpart
was outperformed with respect to the prediction of shares of choices for existing
and new products as well as with respect to the detection of optimal positioning
options for new products. Based on a subsample from a real-world example we
tried to provide a feeling "how the new approach behaves’. Of course, against the
background of literature as listed in Tables 1-3 possibilities for further exten-
sions can be mentioned, e.g.;

e The presented formulation can be modified to handle paired comparison data
from conjoint experiments where product coordinates (attribute-level combi-
nations for the conjoint stimuli) vary systematically.

e The current objective function can be replaced if, e.g., sales volume or profit is
of priority importance.

Activities concerning research in the just mentioned directions are on the way.
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Fig. 2. Contour plot for positioning options and optimally positioned new product.

Appendix

Here, the hypercube approximation for Eq. (2) is described. Two cases are
distinguished: First, it is assumed that the expected ideal point for segment ¢ is
located in the origin and that the segment-specific covariance matrix is diagonal.
Then, it is shown how the general case can be transformed to the situation

explained before.
Case a: (u, = 0, X, = diag(o,, , ..., 0,,)). Note that

by b,

j ---jﬁ(zl,---,z.)dz,--- dzy = [] (Fiplby) — Feplay)
r=1

L a,



388 D, Baier, W. Gaul | Journal of Economertrics 89 (1999} 365-392

Table 9
Predicted shares of choices for the brands and the optimally positioned new product according to
Fig. 2

Segm. 1 Segm.2 Segm.3 Segm.4 Segm.5

(26.8%) (19.6%) (17.9%) (10.7%) (25.0%) Total
Brand A 5% 7% 1% 0% 38% 12%
Brand B 15% 8% 34% 4% 3% 13%
Brand C 0% 4% 0% 0% 43% 12%
Brand D 7% 0% 38% 2% 0% 9%
Brand E 17% 0% 2% 0% 6% 6%
Brand F 25% 0% 2% 0% 4% 8%
Brand G 0% 8% 8% 90% 0% 13%
Brand H 0% 73% 0% 4% 1% 15%
New product 31% 0% 15% 0% 3% 12%
Total 100% 100% 100% 100% 100% 100%
holds with

F,,,(z,,):gb( \/:;) and  Fj,'(x) = & (x)/00pp

We define an ‘iso-mass’ grid for the r-dimensional attribute space with
L' hypercubes (with LeN as a parameter to adjust granularity) via the bound-
aries

-0 if [, =0,
Cy, = { Fep "(Lu/L) il =10 L =1, VYip, ly=0,c.,L
o0 if{, =L,

and get the ‘iso-mass’ condition
(R Cu,

1

e j;(Zl,...,Zr}dzr-..dzl=E

rl‘flh k1] gJH. L

(L = 50 was chosen throughout all analyses in this paper.).
Now, using the (probability mass) centroids of the hypercubes

2l —1 21, — 1\Y
s =1 ! -1 r
‘:l.,.l,—(Frl ( 2L ),....F,,. ( 21 ))

as an (approximative) indicator whether all points of the hypercube are assumed
to belong to R;s or not, we can estimate p,;s from Eq. (2) as the fraction of
hypercubes for which &, , € R;s holds.
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Case b: (meR', X, positive definite). We use eigenvalue calculations for
estimating a rotation matrix C, (C;C, = diag(1, ...,1)) for which

= Crdiag("ns versy v")c;
holds. The transformation z -z = C/(z — u,) leads to

%)= Ciloe; — ),

fi, =0,

%, = diag(v,y, ..., v,) and
ﬁj;s (analogous to Rjs)

that describe a situation for which case a can be applied.
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