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Abstract. The everlasting growth of the web in terms of, e.g., amount of informa-
tion, size of the net, and number of users is demanding for tools that help to tackle
content (re)structuring, discover navigation patterns of users, support marketing
activities of sellers (e.g., advertising and cross selling), and attract potential cus-
tomers in this new environment. This paper describes how user navigation paths
can be extracted from raw web logfiles and how frequent subsequences can be dis-
covered in those paths. To better cope with navigational behaviour in the large,
generalized sequences containing wildcards are nsed and a new algorithm for mining
all frequent generalized subsequences from a given database is presented.

1 Introduction

In Bock (1974) the author writes in his preface that “automatic classification
deals with the problem to structure a large set of objects into smaller homo-
geneous and more useful classes or groups [ ... ] and [ ... ] that the analysis
of the ever increasing data sets is only possible with the help of computers”
(translation from German)—sentences that could serve as well as introduc-
tion into this paper. Bock’s early contributions have helped to establish data
analysis and classification as a direction different from traditional statistics
although he himself has incorporated statistical elements in his work wher-
ever appropriate. In the last years data mining has been used as a new label
for tackling large data sets (see, e.g., the critical review by Gaul and Schader
(1999)), and, just recently, web mining is establishing itself as a promising
area for the application of mining methods to data from the world wide web.

Web mining embraces two complementary aspects, content mining as an
advancement of text mining methods to documents containing a hyperlink
structure, and usage mining as research direction where methods for process-
ing, detecting and analysing user navigational behaviour on web sites can be
applied. Of course, buying behaviour can be analysed by traditional meth-
ods, a more recent data mining application is market basket analysis with the
help of association rules. While those approaches are limited to a Very nar-
row aspect of the buying process, the final transaction, modern e-commerce
is demanding for web usage mining that aims at incorporating earlier steps
of the buying process like browsing the internet, collecting information, get-
ting aware of new products, filling the virtual market basket on a trial basis
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without actual buying, and thereby extending the focus from classical buy-
ing behaviour analysis to data mining concerning all kinds of contacts with
potential customers before the buying decision has been made.

In this paper the starting point is the webserver’s logfile. In section 2
we outline the problems involved in constructing user navigation paths from
raw logfile entries. Section 3 abstracts this situation to finding frequent sub-
sequences in a database (or set) of sequences, fixes some terminology and
presents a known solution to this problem. In section 4 generalized sequences
containing wildcards are used and a new approach (an appropriate adapta-
tion of the algorithm of the previous section) is presented. Section 5 describes
a reduced example to demonstrate the usefulness of the findings obtained in
earlier sections. We conclude with an application to association rules and an
outlook to further research.

2 From web logs to navigation paths

2.1 Problems with navigation path detection

The main source of information about anonymous visitors of a web site stems
from the logfile of the web server, that lists all HTTP-requests of clients in
the order they occur. Each HTTP-request is represented by a one-line-entry
of the logfile within the format explained in table 1.

[ip] [name] [login] [date] [request] [status] [size| [referrer] [agent]

ip numerical address (ip address) of the client host,

name name of the user,

login  login of the basic HT'TP-authentification given by the user,

date  date and time of the request,

request HTTP-request line, containing request method, URL of the re-
quested resource and desired protocol,

status 3-digit status code returned by the server,

size  size (as number of bytes) of the resource actually returned by the
server,

referrer URL of the resource containing the link to the requested resource,

agent name of the client agent (browser).

Table 1. Logfile format: Each one-line-entry contains nine fields separated by a
blank with the meaning described in this table. (More exactly this format is called
combined logfile format, the most often used variant of an extended logfile format.
The older common logfile format did not contain the referrer and user agent fields.)

We will refer to a logfile as a set (more correctly a list) L of logfile entries
l € L and to the ip, referrer, and agent fields of each entry I by liy, lreferrer,
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and lagent and to the subfield of the request field containing the URL of the
requested resource by lres. The other fields are of minor interest for path
construction and left unlabeled.

From the information in the logfile simple usage statistics can be deter-
mined, e.g., about the home countries of visitors, the providers they use, the
web sites they come from (including search keywords used to retrieve a link to
the underlying site), the resources requested most often on the site, and the
time (day of the week and/or time of the day) of the user activity. Accord-
ingly, there is already a plethora of free and commercial software products to
accomplish tasks of this kind (e.g., webalizer (http://www.mrunix.net/web-
alizer/) and analog (http:/ /www.statslab.cam.ac.uk/ sret1/analog/) to name
only two of the free and most common used tools). See Zaiane et al. (1998)
for using an OLAP framework in this context.

Deeper knowledge about how visitors use a website can be gained by
looking at the paths they take on the site. At first glance, it might look
trivial to extract such navigation paths from the logfile: just sort all the
requests by the requesting user. Unfortunately, there are several obstacles for
doing so:

First: Almost no client agent reveals information about the user name, so
that the name field has to be left blank; on the other hand, the login field
requires the user to authenticate himself by typing a login: a questionable de-
mand due to low acceptance by many users. Client identification can also be
done by cookies (and logged in an additional field of the logfile), by a remote
agent, for example an Java applet (see Shahabi et al. (1997)), or by coding
session identifiers into URLs. Though easier to handle for users as there is no
interaction involved, many users advise their agents not to accept cookies and
not to start Java applets from unknown sites for privacy and security reasons.
The acceptance of user identification can be raised by several kinds of incen-
tives, e.g., many software producers make available technical information and
early access releases for registered users only. Website personalization can be
understood as another, rather general measure for convincing visitors to al-
low to identify them. Furthermore, the client ip seen by the server often is
not the ip of the user’s machine, but the ip of the proxy of a provider, i.e. all
user’s connecting to the internet via the same proxy of a provider are mapped
to the same ip (masquerading).

Second: Almost all agents request auxiliary resources (as stylesheets and
images) automatically without user interaction; the webserver cannot distin-
guish between explicit requests from the user and follow-up requests from his
agent and logs them all, thereby polluting the logfile with a lot of (almost)
irrelevant information.

Third: Normally, the client agent locally caches the requested resources
and presents the user the cached copies if he requests the same resource again.
In this case, even excplicit requests of resources visited shortly before may
not go through to the server and so the server cannot log them.
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The variant with path completion by shortest path looks as follows:

{path completion (here: by shortest path)}

Compute a shortest path ¢ from 3jas¢ t0 Lreferrer in the subgraph
of the site graph consisting of the resources 5q,... , 8
(allowing backtracking along § as first steps).

Su= S\ {5} U {(éip: §agenh (§l Yoo §lasts tg, e ytlasr.: tres))}

As soon as one has more than one path started by the same (ip, agent)-pair,
requests cannot be grouped to paths uniquely, if two paths intersect and
a referrer page is contained in more than one path (i.e. |Sreferrer in path| >
1). Here, the grouping can only be guessed by heuristics. The number of
resources which have to be inserted can be used to decide to which partial
path the next resource should be attached. To find plausible groupings, it is
not enough just to look at the number of resources that have to be inserted
to attach the next resource, but the consequences of such an attachment for
the further path building process also have to be taken into consideration.
Figure 2 gives an example. In the sixth step, the attachment of resource F
to the second partial path BC looks more promising, as here no resource has
to be inserted. As can be seen in the following two steps, this attachment
probably could be wrong; the second path oszillates between resource D and
G, many intermediate resources have to be inserted. If, initially, resource F
would have been attached to the first partial path ACE (by inserting C), one
gets a much more plausible result: the second path goes back to D (via B),
the first path proceeds forward from F to G, only 2 instead of 5 resources
have to be inserted. Thus, to take into account consequences with respect to
the further path building process, one has to look ahead a given number of
steps (by a branch and bound algorithm) and select a possibility with the
lowest number of necessary insertions.—Temporal neighbourship is another
criterion for attaching resources to one of several possible partial paths. If the
last request of one partial path is say 15 minutes ago, but the last request of
another partial path only 2 minutes, attaching the next requested resource
to the latter path may be the better alternative. We summarize this step as
choosing a suitable partial path & in algorithm 1 cases dramatically by using
a cut-off value for the time between two requests: if there are no requests for
a fixed amount of time for a partial path, that path is closed, i.e. regarded
as finished; in the literature cut-off values of 25 and 30 minutes are used,
see, e.g., Cooley et al. (1999b) which perform this step separately as session
identification; Yan et al. (1996) uses a cut-off value of 24 hours.

3 Mining frequent subsequences

Having built the set of user paths one looks for common structure in them.
Generally, there are two approaches here: the first looks for subsequences
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(a) site graph

step(logfile information analyzed paths

requested referrer first alternative second alternative
resource ‘

1 A - A

2 C y AC

3 E c ACE

4 B - ACE, B

5 C B ACE, BC

6 F C ACE(C)F, BC ACE, BCF

7 D B ACE(C)F, BC(B)D, ACE, BCF(CB)D

8 G F ACE(C)FG, BC(B)D, ACE, BCF(CB)D(BCF)G

(b) requests and paths

Fig. 2. Path detection: grouping logfile entries to user paths. Entries inserted by
path completion are enclosed in brackets.

occuring in many of the user paths, the second tries to compare paths by
means of a similarity or distance measure. In the following we outline algo-
rithms used for mining sequences and generalized sequences and close with
an own adaptation of a standard sequence mining algorithm to generalized
sequences.

As we are interested in approaches that can handle path information
coming from different groups of users we skip an approach that operates on
aggregated data useful for a homogenous group of users (e.g., Borges and
Levene (1998, 1999a,b)).

Let R be an arbitrary set (a set of resources) and R* := Uien R'U{0} the
set of finite sequences of elements of R (with () as the empty sequence), here
used to model user paths. For a sequence z € R* the length |z| is the number
of symbols in the sequence (|z| := n for z € R, |0| := 0). Let z,y € R* be
two such sequences: z = (z1,... ,2,),y = (y1,... +¥Ym). We say that z is a
subsequence of y (x < y), if there is an index i € {1,...,m — n+ 1} with
(Z15. -+ s Zn) = Wiy o+ Yitn—1). T is a strict subsequence of y (z < w),if it is
a subsequence of y but not equal to y (z <y Az # y).
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A pair of sequences T,y € R* is overlapping on k € Ny elements, if the last
k elements of z are equal to the first k elements of ¥ (Tiast—k+i = ¥i Vi=
1,...k). (Note that if = and y are overlapping on k elements, they are also
overlapping on q € Ny elements for ¢ < k.) For such a pair of sequences
z,y € R* overlapping on k elements we define the k-telescoped concatenation
of  and y to be

T4y = (wl:'-- s Tlagt—ks YLs- -+ :ylast) — (9:11-'- sTlasty Yk+14++ 0+ lylast)'

Note that any two sequences are O-overlapping and the 0-telescoped concate-
nation of two sequences is just their arrangement one behind the other. For
a pair of sets of sequences X,Y C R* we denominate the set of k-overlapping
pairs € X,y € Y by X @ Y and the set of k-telescoped sequences of all
k-overlapping pairs shortly as the set of k-telescoped sequences of X and Y:

X+ Y = +e(X DY)
={z+ry | z€X,y€Y are overlapping on k elements}.

Now let S C R* be a finite set of such sequences (allowing multiplicities,
modeling users taking the same paths). For an arbitrary sequence z € R* we
denominate the relative frequency of sequences of S containing = as subse-
quence as support of T with respect to S

supa(a) o= LS Sl'Sl" L)1

The task of searching all frequent subsequences in the given set of sequences
S means to find all sequences z € R* with at least a given minimal support,
i.e. with supg(z) > minsup and minsup € R* a given constant. As the sup-
port of subsequences of a sequence is greater than or equal to the support
of the sequence itself, one can build frequent subsequences recursively start-
ing from the sequences of length m = 1. With all sequences of length 1 as
initial set of candidates the algorithm performs two steps: first, it computes
the support values of all candidates and selects those candidates as frequent
subsequences that satisfy the minimal support constraint; second, it builds a
new set of candidates of length n + 1 for the next step by trying to join fre-
quent subsequences of length n in the following manner: two sequences ¢ and
d of length n are joined to a sequence of length n+ 1 if they overlap on n — 1
elements, i.e. (€2,.-- sen) = (d1,- . .dn_1); the joined sequence is ¢ +n—1 d.
Algorithm 2 gives the formal description of this procedure. Please note, that
for the special case of sequences describing paths on a graph, in the first join
step only O-overlapping pairs of sequences of length 1, i.e., pairs of nodes of
the graph, have to be considered that are linked by an edge.—This adaption
of the classical apriori algorithm for sets (see Agrawal and Srikant (1994))
to sequences has first been published by Agrawal and Srikant (1995) (with
modifications by Srikant and Agrawal (1996)). It has been used for finding
subsequences in web mining paths by Chen et al. (1996) and other authors
afterwards (Viveros et al. (1997), Chen et al. (1998), Cooley et al. (1999a)).

-
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Algorithm 2 Apriori algorithm adapted for sequences
Require: set of items R (resources), list of (finite) sequences S C R* (user paths),
minimal support value minsup € R+,
Ensure: set of frequent subsequences F := |J, oy Fn of the sequences of S with
support of at least minsup.
C:={{r} | r € R} set of initial candidates, n := 1.
while C' # 0 do
compute supg(c) Ve € C by counting the number of occurence of each ¢ in S
(one loop through S).
Fy:={c € C | sups(c) > minsup}
C'i= Fy 4n-1 Fn {compute new candidate sequences with length n+1}
n:=n+1l
end while

4 Mining frequent generalized subsequences

By a generalized sequence in R we mean a (finite ordinary) sequence in the
symbols R U {x} with an additional symbol * ¢ R called wildcard, such that
no two wildcards are adjacent:

RE":={x € (RU{*})* | Bi€ N: 2 =24y = *}

The wildcard symbol » will be used to model partially indeterminate se-
quences, matching arbitrary subsequences. For a generalized sequence z €
RE" we define its length |x| as the length of the sequence in the symbols
RU{x},ie. |z| :=n,if 2 € (RU{*})". Now let 2,y € R5*" be two general-
ized sequences. We say that « matches y or y generalizes = (y - z), if there
exists a mapping

s Lo, el {1,000, g}
(called matching) with the following properties:

1. m maps indices of elements of z to indices of elements of y that coincide
or to a wildeard (Ym(i) = @i OF Yp(i) = *).

2. m covers all indices of y of non-wildcard elements (y; € R = m~'(i) # 0).

3. m is weakly monotonic increasing.

4. m is even strictly monotonic at places where its image does not belong
to a wildcard (m(i) = m(i + 1) = Yy = *).

Please note that as the set of ordinary sequences R* is a subset of the
set of generalized sequences R&®", this also defines the notion of an ordi-
nary sequence matching a generalized sequence. Obviously matchings are
not uniquely determined by two generalized sequences z and y. A trivial
example is xA* F AA with the two matchings my = {(1,1),(2,2)} and
ma = {(1,2),(2,3)}. Finally we carry over the notions of subsequence and of

W
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k-telescoped concatenation from ordinary sequences to generalized sequences
without any change: for two generalized sequences x,y € Rf" z is called
subsequence of y (z < y), if there is an index ¢ € {0,...,|y| — |z|} with
xj =yir; Vi=1,...,|x|. The condition for subsequences is literal contain-
ment without any matching taking place. Note the difference between A+ C
not being a subsequence of ABCD but matching a subsequence of it (i.e.
A% CF ABC and ABC < ABCD).

Again, let S C R* be a finite set of ordinary sequences (user paths).
For an arbitrary generalized sequence z € R5" we denominate the relative
frequency of sequences containing a subsequence which matches x as support
of x with respect to S:

sups(z) == |{s € S | Iy < s:xky}|/|S]

Now, mining frequent generalized subsequences is the label for the task to find
all generalized sequences with at least a given minimal support. As we are
looking for subsequences anyway, we can narrow our view to closed gener-
alized subsequences, i.e. generalized subsequences without leading or trailing
wildcard (z € R with 21, Z1ast € R).

Up to now no general algorithm for finding all frequent generalized subse-
quences in a set of sequences is known. Spiliopoulou (1999) has invented an
algorithm for finding frequent generalized subsequences in a limited subspace
of the search space: her generalized sequence miner (GSM) looks only for gen-
eralized sequences of a given length and wildcards at given positions (such
subspaces are described by so called templates; see Buechner et al. (1999) for
another approach using templates to limit the search space; templates are
useful in the framework of interactive tools like WUM, see Spiliopoulou and
Faulstich (1998) and Spiliopoulou et al. (1999)).

We present a modification of the apriori algorithm for sequences to gen-
eralized sequences, resulting in a general algorithm for finding frequent gen-
eralized subsequences. The idea is pretty simple. As we are looking only at
closed generalized sequences, the support of any subsequence of such a closed
generalized sequence again is greater than or equal to the support of the
sequence itself. Now, as adjacent wildcards are not allowed in generalized
sequences, we can get every generalized sequence of length n + 1 (for n > 3)
as junction of two overlapping closed generalized sequences of the kind de-
scribed in table 2. Thus, we only have to modify the join step of the apriori
algorithm for building new candidates of length n + 1 in such a way that we
not only use the frequent (closed generalized) subsequences of length n but
also those of length n — 1 from the step before, and try all possible combi-
nations. Closed generalized subsequences of length 3 containing a wildcard
have the form (z, %,y) with z,y € R, shorter closed generalized subsequences
cannot contain wildcards.

Algorithm 3 gives the exact formulation of the necessary comparisions. Of
course, the computation of the support values of the candidate generalized
sequences also has to be modified.

LA
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sequence length sequence  length

ab ... cd n+l axb ... c¢d n+l
= ab...¢ n = axb ... ¢ n
+n-1 b...cd n +p—2 b...ecd n-l

ab ... cxd n+1 axb ... cxd n+1
= ab...c n-1 = axb ... ¢ n-1
4+n-2 b...cxdn +n-3 b... cxdn-1

Table 2. Construction of closed generalized subsequences of length > 4.

Algorithm 3 Apriori algorithm adapted for generalized sequences
Require: set of items R (resources), list of (finite) sequences S C R* (user paths),
minimal support value minsup € R™*.
Ensure: set of frequent (closed) generalized subsequences F' := |J, o Fy of the
sequences of S with support of at least minsup.
C :={{r} | r € R} set of initial candidates, n:= 1.
while C' # 0 do
compute supg(c) Ye € C by counting the number of occurence of each ¢ in §
(one loop through S).
Fu:={ce C | sups(e) > minsup}
C = Fy +n-1 F, {compute new candidate sequences with length n+1}
if n =2 then {introduce wildcards}
C:=0U{(z,+y) | z,y € Fna1}
else if n > 2 then {additional joins considering wildcards}
C :=C'U{z‘+n-2 7} | (r,y) € Fu Bn-2 Fru1,z2 =*}
U{z +n—‘2 y | (-re y) € Fn—l @n—z F‘ns Has —1 = *}
U‘{l' +n-ay | (.’L‘, y) € Foy Gn—-s Fﬂ-]l‘r2 = Yast =1 = *}

end if
ni=n+1
end while

As algorithms of the apriori type return all subsequences of the frequent
sequences found, one often prunes the result set by removing all subsequences
of a frequent sequence contained in the result set, thus retaining only the
"maximal” subsequences: <

Fi={ceF |Ade F:c<d}

For generalized subsequences the algorithm also returns all generalizations
of all subsequences found. Reasonably one prunes the result set further, by
removing all generalizations of a sequence contained in the result set, thus
retaining only the "most concrete” subsequences:

F:={ceF |AdeF:ckd)

We call these two pruning steps subsequence pruning and generalization prun-
ing, respectively.

|
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5 Example

Figure 3 shows an example logfile with only 46 entries (because of space
restrictions), figure 4 the site graph of the underlying website and an analysis
of the paths in the logfile (only the first four path are from the logfile fragment
shown). As one can see, the first path is started by a client with ip-address
129.13.122.23 and an agent called Konqueror. At 16:53:45 a second path is
started by a client with ip 193.197.80.33 and agent Moxzilla coming from
a search engine (Altavista) which looks for the keyword "webmining”. At
17:02:21 a third path is started by a client with the same ip-address and
agent name as the client of the second path, so it could be very well the
same user; the path is marked by a missing referrer information. Then, at
17:03:32 a fourth path is started, again by a client with the same ip-address;
but this time the agent name is different, so probably the fourth path is
taken by another user. Retrieving the DNS-name of ip-address 193.197.80.33
in fact reveals, that it is a proxy. Most auxiliary resources already have been
removed beforehand; e.g., one can see a stylesheet page.css showing up each
time page A.xml is requested.

Figure 4 shows the result of the path construction of the four paths from
the logfile fragment shown in figure 3 together with eight further paths con-
structed via path completion by backtracking as well as via path completion
by shortest path. Looking for ordinary frequent subsequences by applying
the apriori algorithm for sequences (algorithm 2) does not give very useful
results here: using the paths reconstructed by backtracking, one finds the
sequences CHI with a support of 8/12 and BCH with a support of 7/12, The
first sequences containing more than three resources appear at support 4/12:
BCHI and EBCH. Using the paths reconstructed by shortest path comple-
tion one also finds the two sequences CHI and BCH of length 3 (BCH only
with support 6/12), but now longer sequences appear at support 3/12, e.g.,
the sequence BCHI, this time accompanied by a bunch of other sequences
(ABEF, BCHC, CHIJ, BEFGB). This demonstrates that the results of se-
quence mining depends on the navigation path completion scheme applied
beforehand.

Searching for frequent generalized sequences with algorithm 3 results in
the same set of three sequences with high support regardless of the path com-
pletion heuristics used: BxCxH+I with support 12/12 and two lightly more
specialized sequences BxCHI and BCxHx] with support 11/12 and 10/12 re-
spectively (the latter is 9/12 for the paths reconstructed using shortest path
completion). Of course, the algorithm finds all literal subsequences of these
sequences as well as all more general sequences (like BxH+I etc.), but these
less useful subsequences are pruned by the two pruning steps (subsequence
pruning and generalization pruning) presented at the end of section 4.
Already this simple example gives some insights into the good properties of
generalized sequences: first, they are more robust than ordinary sequences
against artefacts coming from navigation path construction steps; second,

T —
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]
B /: C :\ D
N N AN
E==F-<>-@G H=>[<>] K==L M
(a) site graph
nr reconstructed paths
(by backtracking) {(by shortest path)
1 [ABEF(EB)CHIJ ABEF(B)CHIJ
2 |[ACBE(BC)HI(HC)D ACBE(C)HI(C)D
3 [BCI(C)HI BCJ(C)HI
4 |[ABG(B)E(B)CH(C)I(C)D ABG(B)E(B)CH(C)I(C)D
3 |ABEFG(FEB)CH(C)JI ABEFG(B)CH(C)J1
6 |ACJ(C)D(C)B(C)HI ACJ(C)D(C)B(C)HI
7 |BEFG(FEB)CHIJ(IHC)DKLM BEFG(B)CHIJ(C)DKLM
8 |ABF(B)CIH(I)J ABF(B)CIH(1)J
9 |ADK(D)L(D)AB(A)CHI ADK(D)L(D)AB(A)CHI
10|ABEFG(FEBA)CI(C)HI(HC)D ABEFG(BA)CJ(C)HI(C)D
11[ABCD(C)HIJ(IHCD)M ABCD(C)HII(CD)M
12 CBF(BC)H(C)DK(DC)![CKDCHCB)E CBF(BC)H(C)DK(DC)I(CB)E

(b) anaylzed paths

Fig. 4. Example web site and example set of paths analyzed with help of the two
different path completion heuristics from section 2,

they can cope with local deviations of the navigation paths, thus resulting
in longer paths with higher support values, i.e. they better sketch user nay-
igational behaviour in the large, contrary to local descriptions by ordinary
subsequences.

6 Applications to association rules and outlook

In web mining contexts frequent generalized subsequences may be of interest
on their own, as they give an idea about the navigation paths users take on
a website.

Additionally, the retrieval of frequent (generalized) subsequences is the
hard part of the generation of association rules. An association rule is (de-
scribed by) a pair of (generalized) sequences Z,y € RE" with the meaning
that if # (the body of the rule) has occured then—under conditions to be
explained in the following—y (the head of the rule) will occur, too, where
occurance is related to the underlying set S of sequences. We suggest dif-
ferent interpretations of the rule notation that all have their origin in the

L
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web site traversal behaviour of users as reconstructed via path completion

and depicted in S. First, z = y = z +, Y= (Z1,... ,Tlast = Y1, s Ylast)
which best corresponds to the usage of ordinary navigation paths. Second,
T~ Y EThyY = (Zy,.n0 s Tlaghy %, Y1, - .- s Yiast)s i.e., a wildeard is used to

combine z and y. Both cases can be handled with the tools described so far.
In addition to

sups(z —+ y) :=sups(z +1y) or sups(z ~ y) := supg(z +y)

we need the confidence

sups(z +1 1 supg (x4
confg(x — y) := M or confg(z ~ y) := BapgLa Y]
supsg(x) supg(z)

a number that counts the occurence of z +; Y or Ty given .

From early papers on web usage mining, the idea of feeding back the
usage information extracted from the logfiles to the hyperlink structure of
the underlying website has been suggested as an application of the results
found by various data analysis tasks (see Yan et al. (1996)). Recently this
idea has been revived by the name of recommender system making use of
frequent item sets and association rules (see Mobasher (2000)). The paths of
active users are compared to the left sides (the bodies) of a rule set previously
extracted from the logfiles and (parts of) the right sides (the heads) of the
matching rules with highest confidence are recommended via dynamically
included direct hyperlinks.

Using only sets of resources (and not sequences) as the base for recommen-
dations has the drawback of neglecting the order of the navigation patterns,
and, thus, may result in directing users back to resources, they might no
longer have an interest in. On the other hand, using ordinary subsequences as
base for recommendations retains the order information, but only catches lo-
cal navigational behaviour. Generalized subsequences combine the strengths
of the two methods, retaining order and not being bound to local behaviour
(by allowing deviations).

Let us go back to the example from the previous section and look at user 9.
Imagine he has already done ADK(D)L(D)AB(A)C. Using frequent ordinary
subsequences we cannot recommend a next resource, because no subsequence
of the frequent literal subsequences (CHI, BCH, BCHI and EBCH) can be
found in his partial path. But the subsequence BxC of the frequent general-
ized subsequence BxCxHxI matches a subsequence of the tail B(A)C of his
partial path. Thus, using the assocation rules BxC~sH and BxC~~I (both
with support and confidence 1) we can recommend H and I for subsequent
browsing, exactly the resources, he visits afterwards.

At the end, different outlooks are possible. One can focus on recommender
systems and discuss the degree to which web mining results of the kind pre-
sented in this paper should be incorporated in such tools. A more theoretically
oriented outlook can stress further algorithmic aspects, e.g., of how to cluster
subsets of sequences that show different kinds of navigational behaviour,
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