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Abstract: Association rules are used to build decision trees with the help of
so-called multivariate splits that can take some (or all) attributes for the descrip-
tion of underlying (data) objects into consideration. It is shown that the new
DTAR (Decision Tree Construction by Association Rules) method produces small
trees with better interpretability than other multivariate decision tree construc-
tion techniques. Data sets well known to the data mining and machine learning
community are analyzed to demonstrate the abilities of the new method.

1 Introduction

Association rules and decision trees are well-known labels for two families of |
techniques often used in the field of knowledge discovery in databases and

data mining. This statement is confirmed by a recent own survey concerning I
data mining application reports from the years 1993 to 1998 where decision .
trees (32 applications), neural networks (27 applications), and association

rules (16 applications) got top positions in a ranking according to frequency

of application. In a further study concerning data mining software tools

we could put together 16 offers from software firms and—here—in 13 cases

decision tree algorithms and in 9 cases association rule algorithms were sup-

ported by the corresponding software systems (see Gaul, Sauberlich (1999)

for an early version of this study).

Information of this kind was used as starting point for the idea to combine
two popular data mining areas, namely association rules and decision trees,
to suggest a new method for decision tree construction.

1.1 Decision Trees

A decision tree is built from a so-called training data set which consists
of interesting (data) objects. Each of these objects is described by a set
of realizations of prespecified attributes and a class label. A decision tree
contains a root node, (zero ore more) internal nodes, and (zero, two or more)
leaf nodes. In the normal case, the root node and all internal nodes have
two or more child nodes created by so-called splits where the outcome of
a mathematical or logical expression of the realizations of the attributes of
those (data) objects that are attached to the father node is used for split
selection. This “splitting” process generates subsets of the training data
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set attached to the corresponding tree nodes where the degree of purity of
the data subsets with respect to class-membership of their (data) objects
should improve. Leaf nodes have associated class labels to indicate that a
majority (if not all) of the (data) objects of their attached training data
subsets belongs to the labeled classes.

One problem in constructing decision trees is the selection of “best” splits in
such nodes. Most decision tree construction algorithms use only one of the
prespecified attributes at each splitting operation and those which consider
more than one attribute, so-called multivariate splits, often produce results
that are in general hard to interpret.

Figure 1 shows an example of such a decision tree built on training data
depicted in Table 1. Each node contains in the upper half the node num-
ber and in the lower half the quantities of the objects within the attached
training data subset that are grouped according to the prespecified classes
(in this case: two classes). The split criterion is written beside each arc of
the tree. Additionally, under each leave node the associated class label is
given.

Once that such a decision tree is built it can be used to predict the class
labels of further (data) objects—not contained in the set of training data—
for which the apriori classification is not known.

1.2 Association Rules

Association rules work with measures for the association between certain
quantities. In the starting situation, one has a set of items J — T
and a set of itemsets D = {t,, wytn} of so-called transactions el j=
1,..,n. For a pair (Y, Z) of itemsets Y,Z C I (e.g., subsets of brands of a
product category) an association rule uses bounds for support and confidence
measures of ¥ and Z to check whether the “association of Y and 2” is
meaningful. The support (Y UZ) = ute—"%"—zi‘ﬂ gives the share of itemsets

in D which contain ¥ UZ and the confidence c(Y, Z) = J}{;@ describes the
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Table 1: Exemplary training Figure 1: Decision tree built on
data the training data of Table 1
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fact that c(Y, Z) percent of the itemsets in D that contain Y also contain
Z. The task of an association rule algorithm is to find all association rules
which fulfill prescribed bounds for support and confidence values.

Table 3 shows possible rules generated from the data set of consumer transac-
tions given in Table 2 (articles (items) bought together within single buying
situations or consumer transactions that are the basis of a so-called market
basket analysis). One possible association rule is “Juice — Coke” with a
support value of 2/3 and a confidence value of 4/5. This rule describes the
situation that in 80 percent of all transactions of Table 1 in which juice was
bought also coke was in the market basket and that the event that these
two products were bought together occurred in 4 of the 6 transactions under
consideration.

9 Traditional Decision Tree Induction and
Some Notation for the New Method

The task of constructing a decision tree from a training data set is also
called tree induction in the literature. Almost every tree induction algorithm
proceeds in a top-down fashion in the following way: If at a node a specific
stop criterion is fulfilled the node is called a leaf node and no further split of
the data set attached to this node is made. Otherwise, all possible splits are
considered and scored with help of specific selection measures (see Mingers
(1989a) for an empirical comparison of selection measures for decision tree
induction). A “best” split creates as many child nodes as there are distinct
outcomes of the split criterion and the parts of the corresponding partition
of the data set attached to the father node are assigned to the child nodes .
just created.

For our purposes—to suggest a new decision tree induction technique—the
following notation is used:

Xo Attribute with value space
Al {Gus e Ou, } 5 Ow, ER, if X, is categorical ~_ ,
¥~ [av, by) , ay,b, €R, if X, is numeric 7 T 77 ?
Ty Realization of X, z, € A,,
?
Transaction | Articles bought (ltems) |_Rules with support > 3 | Support | Confidence
14 Juice, Coke, Beer Juice — Coke 213 4/5
12 Juice, Coke, Wine Coke — Juice 2/3 1
1y Juice, Water Coke — Beer 1/2 3/4
14 Coke, Beer, Juice Beer — Coka 12 1
1y Juice, Coke, Beer, Wine Juice, Coke —» Beer 172 34
fs Water =

] Table 3: Some rules with support >
Table 2: Exemplary data set of 1/2 and confidence > 3/4 obtained

consumer transactions from the transactions of Table 2
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C; Class label, j € {1,...,J},
L Training data set attached to node p (index p will be omitted),

(x,C) € L Element of L, x = (zy,...,2v) withz, € 4, (v =1,..,V),
Ce {Cls "-:CJ},

Sk(L) Split which divides L into k disjunctive subsets L;, i € {1, ...,k},
Binary split if k = 2,
Univariate (multivariate) split if only one (more than one)
attribute is used for splitting,

N Number of elements of L, N = |L|,

NI Number of elements (x,C) € L with C = Cj,

N; Number of elements of L;, N; = |L;|, i
Nf Number of elements of L; with (x,C) € L; and C =C;.

These quantities can be put together in a contingency table as shown in Table
4 from which the outcomes of specific selection measures can be computed.

s | ¢ ¢ .. ¢ | Sm
Iﬂ Nll Ntz Nfr Nl
A T .
L, N! N? N} N,

sl‘m NI N! NJ N

Table 4: Contingency table for split Sk(L)

Most decision tree induction algorithms only use univariate splits. For nu-
meric attributes binary splits can be given as questions of the form “Is
z, € [1,7]?" (r < 7" € A,). For categorical attributes each subset B C A4,
of the attribute space can be considered for such binary splitting operations.

Well-known existing approaches for multivariate decision tree induction con-
sider binary splits and use a linear combination of the attributes as split
criterion as OC1 by Murthy et al. (1994) or CART-LC by Breiman et al.
(1984). A recent approach from Fukuda et al. (1996) applies so-called nu-
meric association rules and uses two numeric attributes for splitting. All
these methods are only capable for numeric attributes and—as the splitting
criterion has the form of a linear combination of the attributes or of a re-
gion in a two-dimensional value space—the results are in general not easy
to interpret.

After having built a decision tree in the top-down fashion mentioned earlier
so-called pruning strategies often are applied to select subtrees of the decision
tree just constructed that avoid overfitting effects with respect to the training
data (see Esposito et al. (1997) or Mingers (1989b) for surveys concerning
pruning techniques).
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Against this background we consider binary multivariate splits for numeric
and categorical attributes composed of subsets (subintervals in the numeric
case) of the single value spaces of the alternatives. Since the number of
possible splits of this form is in general very large we use a modification of
an association rule algorithm to handle the search space. As we focus on tree
construction issues, we do not consider pruning strategies. A main reason is
that we want to perform a fair comparison of algorithms concerning decision
tree induction aspects. Afterwards each of the algorithms compared can be
subjected to the same pruning activities.

3 Combination of Decision Trees with Asso-
ciation Rules: The DTAR Method

Our approach for DTAR. (Decision Tree Construction by Association Rules)
is based on the following steps:

e Generate association rules W — C with
T-tupels W = (Wy,, <oy Wop), Yy < Yy for p=1,...,T—1 (T < V) where

_ | B , B, C A, if X, is categorical
W= iyt o 1o S 7 Tu 7l € Ay, i X, t8 rumeric ¥ € (L Vh

and class labels C € {C},...,Cy}.

e Compute support values
s(W)=|{(x,C) € L: Ty, € wy, A... ATpy € wy.}|/N,
s(WUC;) = |{(x,C) € L:zy, €wy, A... ATy, € wu ANC =Cj}|/N.

e Determine the outcome of the underlying selection measure with the help
of the support and confidence values of the corresponding rules.

e Chose an association rule with a “best” outcome of the underlying selec-
tion measure and use the question "Is z,, € wy, A ... A T, € W, 7" a8
split criterion.

For computational purposes we modified the Apriori Algorithm from Agrawal
and Srikant (1994). The main task is the generation of so-called frequent
itemsets (with a support value greater or equal than a minimum support
threshold) from which rules with required confidence values can be gener-
ated in an easy way. Considering the fact that all subsets of a frequent
itemset must also be frequent and starting with the frequent itemsets with
just one element, in the k-th recursion only the frequent itemsets with k—1
elements are used to generate candidates for frequent itemsets with £ ele-
ments. In this manner, the search space for frequent itemsets is reduced

considerably.

An itemset W in our approach is a tupel of subsets and subintervals selected
from T out of the V attribute spaces, respectively. Adequate subsets or
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subintervals of the underlying attribute spaces constitute the items in this
context and are put together in the set 7. All elements g € I for which a
class label C € {C, ..., Cy} exists so that s(gU C) 2 Smin are called frequent
and put together in the set G;. In the k-th recursion we have to secure that
only those itemsets with £ — 1 elements are joined which have the first & —2
elements in common and for which the remaining two elements are subsets
from different attribute spaces. Thus, we avoid to create itemsets in which
several elements belong to the same attribute space. Figure 2 shows the
DTAR method in pseudo code where the item(sub)set notation is used for
the construction of the T-tupels W = T i

_ iy B,CcA,, if X, is categorical
I'={{w,}|w, = {[.,.m BT STy T € Ay, X I8 umaste
ve{l,..,V}},

L={(x,C)z, € A,, C € {C},..., Ci}}; min € [0,1],
Gi={g € I|3C € {G,,...,Cs} : 3(gU C) 2 8pmin},

while G_; # 0 do

Fk = {‘[gla veny Qk-lygi—l}lg = {91: ---;Qk-l},g' = {gi: ---:g;;.q} € Gk—la
Gu= g:n.u =1,.,k= 2,gk-1 C A, 9;;-1 C Ay with v < V'},
Hy = {h e Hyvg" = {gf,...g{ |} Ch:g" € Gy},
Gk = {g € H[,‘HC € {Cl.; sy CJ} : 3(9 u C) = Sm,'n},
k=k+1
end while
answer :;i G,

Figure 2: Pseudo code for DTAR

The outcome of the chosen selection measure depends on the binary split
created with the help of W and denoted as Sa(L, W). 1t can be computed
in a direct way using the corresponding support and confidence values. The
contingency table shown in Table 5 describes this situation.

S,(L,W) e oA c Sum
LW) | N-swWucC) N-sWuC,) .. N.sWuC,) N-s(W)
LW) |N'-N-sWwucC) N?=N-s(WuC,) ... N =N-s(Wuc,))| N-(1-s(W))
Sum N! N? N’ N

Table 5: Contingency table for rule W — C

As only binary splits are considered the contingency table consists of two
rows. The support of W denotes the share of objects of L fulfilling the cor-
responding splitting criterion. The number of objects fulfilling the criterion
and belonging to class C; is equivalent to the value N - s(WUC;). All other
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values of the contingency table can be computed directly with help of these
support values and the marginal values already known.

For each frequent itemset W the support values s(W U Cj) for all possible
class labels C; (j = 1, ..., J) have to be determined in course of the algorithm.
Then, the outcome of the chosen selection measure can be computed directly
by using these support and confidence values, e.g., the outcome of the Gini-

Index is given by

2

. NG ANEENG N L (s(WUGy))?
Glnlsa(L,W)(L) = Zl W;(T\%) —jz (W) = S(W)-Z(s( s(w) J))
= = =1 N e

= «W,Cy)?
(1= 5(W) ,Z; (A= 2 ‘i (%)2

To illustrate the DTAR method the training data of Table 1 are used. Fig-
ure 3 shows the frequent itemsets, the rules with corresponding values for
support (Sup), confidence (Conf), and the outcome of the gini-index (Gini),
as well as the decision tree built by DTAR. Compared with Figure 1 only
one split is required to get a perfect division of the data set.

Suin =215 DTAR finds the following rules
1 ={(a}.(6).(c), (@b} (@), (Bye) (L1}, ([22]) } [Rule Sop [ Cont | i
G, ={(a).(ab},(a,c). (be) (L1).(122) } BEY 75 1 102133
Hy ={((a),1L11).[(a).[2.21),( (a,B),[L1]), {a,b) > A 2/5 | 273 [0,0133
({a.b).[221). e, c) L ((ae) (22]),  [ac) = A 35| 3/4 | 0,18
({byc) L) ((B.c) (2200 } E’E{i%?i :;fl: ?3 gi::

G = A K 2 N L C Ly Al = 'y
L ={((a,¢),[2,21),({bye) L1} } i L
({a,c)[221) = A/ 25| 1 [072133
({bye) =B [ 25 1 0,48

xefb.c) n
xz€[1.1]

Figure 3: DTAR results: Frequent itemsets, rules, and the decision tree
built from the training data of Table 1
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4 Applications and Comparisons

We used five data sets well known from the STATLOG Project (see Michie et
al. (1994)) to compare our new DTAR method with two multivariate decision
tree induction algorithms (OC1 and CART-LC) and with one univariate
technique (CART). Table 6 shows some characteristics of the underlying
data sets.

Name Attributes Numeric Attributes Objects Classes
Australian Credit 14 6 690 2
Diabetes of Pima Indians 8 8 768 2
German Credit 20 7 1000 2
Heart Disease 13 7 270 2
Vehicle Silhouette 18 18 846 4

Table 6: Characteristics of the data sets used for comparisons

Only numeric attributes were analyzed since OC1 and CART-LC cannot
handle categorical attributes, As mentioned before no pruning strategies
were considered. For all data sets we conducted 10-fold cross validations. As
comparison criteria the accuracy of a tree (the percentage of (data) objects
for which the class label is correctly predicted by the tree), the number of
leave nodes (a measure for the complexity of the tree structure), and the
mazimal depth of a tree (the length of a longest path in the tree) are used.
Table 7 shows the results of this comparisons.

Criterion oC1 CART-LC CART DTAR
*—_—_
Accuracy 68.70% 73.62% 72.32% 74.20%
Australian Credit Leave Nodes 65 82.3 127.2 59.2
Maximal Depth 12 13.2 16.3 12.2
Accuracy 67.58% 68.10% 71.09% 71.48%
E‘L&Ibaz‘: o ime e Nodes 81.3 95.2 1225 54.4
Maximal Depth 11.4 13.3 14.1 12.1
Accuracy 62,90% 62.90% 64.70% 63.50%
German Credit Leave Nodes 172.3 193.7 248.1 124.3
Maximal Depth 211 20.2 20.7 17
Accuracy 64.44% 66.67% 65.56% 72.22%
Heart Disease Leave Nodes 35.9 42 53 20.2
Maximal Depth 9.3 10.1 10.6 6.8
Accuracy 71.04% 70.45% 71.99% 72.22%
Vehicle Silhouette |Leave Nodes 111.7 1221 126.3 68.4
Maximal Depth 16.1 17.3 17.6 9.5

Table 7: Comparison of the trees built on the data sets of Table 6

In four of the five data sets analyzed the DTAR method came out best with
respect to accuracy. Only for the German Credit data set the CART algo-
rithm constructed trees with an accuracy slightly better than DTAR. With
regard to the number of leave nodes in all cases the trees constructed by the
DTAR method showed the best results. With respect to maximal depth only
for two of the data sets under consideration OC1 was better than DTAR.
All in all, DTAR generated trees that are comparable or even better than
those constructed by OC1 and CART-LC although the additional ability of
DTAR to handle categorical attributes was not taken into consideration.
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5 Conclusions and Outlook

Association rules and decision trees are popular areas of data mining. We
use a combination of techniques from these areas to cope with the problem
of multivariate split selection for the construction of decision trees. Our new
DTAR method competes favourably with other multivariate decision tree
induction algorithms with respect to accuracy and tree structure (number
of leave nodes, maximal depth). Additionally, DTAR can handle categorical
attributes and the results are in general better to interpret than those of
comparable algorithms. Further analyses and simulations are on the way to
get additional and more extensive comparisons and to proof the usability of
the new method on larger data sets.
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