Webkdd'01

Recommender Systems
Based on Navigation Path Features

Wolfgang Gaul, Lars Schmidt-Thieme
{Wolfgang.Gaul,Lars.Schmidt-Thieme} @wiwi,uni-karlsruhe.de
Institut fiir Entscheidungstheorie und Unternehmensforschung
University of Karlsruhe, Germany

Abstract:

Several kinds of features of user navigation paths
(e.g., subsets of the resources as nodes of the
paths covered, subsequences of the sequences
used for path description, path fragments con-
structed via combination of subsequences and
wildcards) can be employed to build recom-
mender systems designed for tasks as different as
site personalization, cross-/up-selling, and navi-
gation assistance. A vocabulary to describe dif-
ferent kinds of recommender systems and generic
quality measures for system evaluation are for-
mulated. The construction of specific recom-
mender systems, especially systems based on fre-
quent path features, is explained. In addition to
the attempt to provide a formal framework for
navigation path based recommender systems re-
sults on the performance of different types of
suchs systems are reported.

1 Introduction

A recommender system is software that col-
lects and aggregates information about site vis-
itors (e.g., buying histories, products of inter-
est, hints concerning desired/desirable search di-
mensions or other FAQ) and their actual navi-
gational and buying behavior and returns rec-
ommendations (e.g., based on customer demo-
graphics and/or past behavior of the actual visi-
tor and/or user patterns of top sellers with fields
of interest similar to those of the actual con-
tact), These recommendations have to be cre-
ated in such a way that they are valuable for
browsers/customers/visitors as well as for site
owners. Nowadays, recommender systems are

installed in more and more commercial sites to
assist consumers in better/faster accessing use-
ful information but also site owners in convert-
ing browsers to buyers, in stimulating cross- and
up-sales, and in establishing customer loyalty
as part of the activities to improve electronic
customer care. — Recommender systems have
been studied extensively since Resnick et al.
(1994) who used the label collaborative filtering.
An overview about applications of recommender
systems in e-commerce can be found in Schafer
et al. (1999, 2000) and an analysis of some rec-
ommendation algorithms in Breese et al. (1998)
and Sarwar et al. (2000).

Beside such known approaches to designing
recommender systems (based on buying behav-
ior) a new type of recommender system has
emerged that aims at helping surfers in navi-
gating the web, At each step in the navigation
process recommendations based on the up-to-
now known navigation history are given concern-
ing pages to visit next. Recommender systems
based on navigation paths thereby add to the
static hyperdocument linking by expanding it to
dynamically linked hyperdocuments.

Recommender systems based on navigation
paths are useful in e-commerce contexts as they
try to make buying more pleasant for potential
customers. As major parts of an e-commerce site
can consist of product catalogs and the presenta-
tion of individual products, linking between such
information can also be performed by traditional
recommender systems. The real strength of rec-
ommender systems based on navigation paths
becomes clearer in more or less unstructured col-
lections of information, as found in, e.g., news
groups, message boards, web directories, search

engines and the like — provided that usage infor-
mation within those collections can be gathered
and joined.

First roots of recommender systems for paths
can be found in an adaptive hypertext system
of Stotts and Furuta (1991) that requires a spe-
cial document reader which can be advised to
modify (attributes of) links already coded in
the documents with respect to usage behavior.
The idea of developing recommender systems
based on standard HTTP-servers and the infor-
mation in their logfiles dates back to Yan et al.
(1996), where a very simple clustering algorithm
is used and the construction of recommender
systems is described as dynamic hypertext link-
ing. Perkowitz and Etzioni (1998) build rec-
ommender systems based on co-occurrence fre-
quencies between resources and connected com-
ponents of the usage graph and call them adap-
tive web sites. Mobasher (2001) has investigated
three different approaches to compute recom-
mendations by using sessions described as sets
of pages visited together (including visit times).
His first approach is based on association rules
for sets, for a second alternative session clus-
ters (computed via the k-means algorithm) are
needed, the third approach uses resource clusters
(computed by means of ARHP (association rule
hypergraph partitioning)). — From the point of
view of web server design, the problem of com-
puting recommendations resembles the prefetch-
ing problem (see e.g., Bestavros (1996)), i.e.,
the prediction of the pages requested next by
the aclive users to speed up server operation
and thereby lower waiting times; the prefetching
problem is easier in the respect that pages close
to the recommendation point are perfect choices
for predicted requests (as they are expected to
rest a shorter time in the cache). — Bodner
and Chignell (1999) tackle the problem from the
point of view of text retrieval: they exploit the
reference texts of visited links and keep track
of a list of relevant key words that is fed into a
search engine; the results of the search are linked
from the keywords found in the active document.
Joachims et al. (1995) and Lieberman (1995)
present WebWatcher and Letizia, two agents for
web browsing that are capable of giving recom-
mendations depending on the users’ searching
behavior so far; WebWatcher uses similarities in

Webkdd'01

the link structure to identify related documents,
Letizia gathers additional data about user be-
havior (as bookmarking and usage of documents
on different servers not available on server-side).
Fu et al. (2000) propose another agent that col-
lects usage information of different users in a
central repository and computes recommenda-
tions from sets of pages visited frequently to-
gether by means of association rules.

2 Prerequisites for recom-
mender system evaluation

Let R be an arbitrary set (the set of resources
of a website that correspond to the nodes of the
link graph of this site). The set R* := [J, ¢y R"
of all tuples of R is called the set of sequences of
R and serves as basis to model user paths.

A sequence p = (p1,...,pjp|) € R" describes
a path as sequence of resources of R, its length
is denoted as |p|. Sometimes, we replace the
tuple-notation by just putting the corresponding
resources one after the other, i.e., pip2 -+ -pjp|-

From a mathematical point of view, a recom-
mender system based on navigation paths is a
map

(1)

(where P(R) denotes the powerset of R) and the
set r(p) is called recommendation set for p € R".

Starting point for an evaluation of recom-
mender systems is a (multi)set of paths S.
Each path p € S can be split at position i €
{1,...,|p| = 1} in a history hi(p) = (p1,...,Pi)
and a future f;(p) := (Pi41, .- Plp|)- pi is called
recommendation point.

Now, a general definition for a recommenda-
tion quality measure can be given by

r: R* — P(R)

g: Ry x Ro x R — R{
(hlf!r) —+ Q(hlfar)

where R, describes the history space, Ra the fu-
ture space, and R the space of (sets of) recom-
mendations r(h) derived from h € R;. Various
choices of Ry, Ra, and Ra are possible. We will
restrict to Ry = Ry = R and Rz = P(R), in
the following.

(2)

24

q(h, f,r) measures the quality of recommen-
dations (e.g., by choosing h = h;(p) and com-
paring r = »(hi(p)) with f = fi(p) for a path
p).

Simple examples of recommendation quality
measures are

q(h, f,7) := {y € r|y occurs in f}| (3)
which is just the number of recommended re-
sources that also occur in f, or

q(h,f,?‘) = Z g(hlhlsf:y) (4)

yer(h)

where § : R x R* x R — R describes a mea-
sure that depends only on the recommendation
point Ay, and evaluates the degree of confor-
mity between f and a single recommendation
y € 7(h), i.e., the quality measure does not take
into consideration any compound effects as, e.g.,
preference of resources concentrated in a partic-
ular region of the site over those scattered all
over the whole site.

Recommendation quality can take into consid-
eration the distance between history resources
and recommended resources (measured with the
help of the underlying site graph structure or,
alternatively, defined as minimal number of re-
sources between recommendation point and rec-
ommended resource in the actual future of a
path), e.g., for z,y € R and f € R* (e.g., with
z = pi,y € r(hi(p)), and f = fi(p) for a path
p € R*) one can define

u(dist(z,y)) ,ify#=
q(=, fiy) = occurs in f (5)
0 , otherwise

where dist denotes an appropriate distance func-
tion and u measures the utility assigned to the
distance between pairs of resources. The mean-
ing is that resources in the direct neighborhood
of a recommendation point are easier to find
(and, thus, to recommend) than adequate re-
sources far away. Examples for utility functions
are

(6)

u: R — RY

Webkdd'01

1 hit count
2 d linear scale
logd + 1 log. scale
(d —do + 1)d14,,4,)(d) window effect
: —— ll de [doldl]'
with djg, 4,)(d) := { 0, etharwics

Up to now, recommendation quality measures
as depicted in (3), (4) are restricted to a single
navigation path but, of course, for a given rec-
ommender system r, a recommendation quality
measure ¢, and an underlying (multi)set § of
navigation paths, one can define, e.g.,

[pl=1

QE(8) == >3 qlhilp), fi(p), r(hi(p))

pPES i=1

as raw recommendation score for r relative to S.
Let

max

max (§) 1= max Q" (S)

be the (theoretically) mazimal recommendation
score (relative to a given quality measure g¢);
see section 3 for a simple method to compute

max (S) for a given test set S. Then, one can

define
Qr(S) == Qr*™(S)/Qmax(S)

as normalized recommendation score, which is a
useful characteristic number for the comparison
of the performance of a recommender system on
different test sets or of different recommender
systems on the same (multi)set S.

Now, the problem to find an optimal recom-
mender system can be formalized as follows:
given a quality measure ¢ construct a recom-
mender system » on the basis of information
from a training set S*™" of paths so that the
raw recommendation score of r on a test set Stest
of paths (not used for building the recommenda-
tion system) is maximal.

For the simple recommendation quality mea-
sure (3) that just counts the number of confor-
mities between resources of r and f, apparently,
the optimal recommender system is the system
that simply recommends all resources for any
given history: for sure, this recommendation set
will hit all resources in the future and be of no
interest whatsoever. Two kinds of modifications
are possible to make the problem more interest-

ing:

25

1. Modify the recommendation quality mea-
sure. For instance, one may think of count-
ing the number of hits relative to the num-
ber of given recommendations. While opti-
mal recommendations for the simple quality
measure (3) consist of large recommenda-
tion sets, optimal recommendations for the
relative number of hitting recommendations
have very small recommendation sets: in al-
most all cases for each history only the one
resource with highest follow-up probability
is selected and all other resources with lesser
but perhaps also high probabilities are dis-
carded.

2. Restrict the space of possible recommender
systems by imposing additional constraints.
A restriction that always ever is sensible in
practice is to allow only recommendation
sets of a given maximal size (i.e., [r(h)| < n
for all h € R* and a given n € N). This
constraint forces a restriction to the best n
recommendations; in practice, n will be a
small number, say 3 up to 5, of recommen-
dations that users may be willing to look at.
— Thus, one may specialize the problem of
finding an optimal recommender system to
the construction of an optimal one among
a predefined class of recommender systems
(e.g., those with at most a given number of
recommendations per history).

For paths in a (sparsely linked) graph the
computation of recommendations with respect
to a quality measure based on hits (disregarding
distances of recommended resources) will — in
most cases — still result in a set of resources
directly linked to the recommendation point.
Here, we use the idea of Mobasher (2001) to
weight resources farther apart higher by choos-
ing an appropriate quality measure depending
on the distances of the recommended resources
(another, simpler distance sensitive quality fune-
tion can be found in Cooley et al. (1999)). Of
course, utility functions — when used for mod-
eling different problems — may depend on other
parameters (as, e.g., explicit or implicit ratings)
besides distance as well,

Webkdd'01

3 Different types of recom-
mender systems

As the preceding discussion has shown, a vari-
ety of optimality criteria for recommender sys-
tems can be designed on the basis of appropriate
choices of ¢ and optional restrictions for r, Here,
we start with some obvious possibilities to type-
cast recommender systems.

As normally the number of collected naviga-
tion paths is very large compared to the number
of resources of the underlying site, we may break
down the global problem of finding optimal rec-
ommender systems for a whole site into a set
of smaller subproblems of constructing optimal
systems for each single resource. We split R*
for 2 € R into spaces R} := {p € R* | plp| = 2}
that consist only of sequences with z at the last
position and call

r: : R, — P(R) (7)
a local recommender system at resource zin con-
trast to the global version described by (1). Ac-
cordingly, the training set S*™" for the global
system is transformed into training sets Strn C
R x R* for the local systems that consist of all
navigation paths p split at z (as recommenda-
tion point, if p contains z); in the case that a
resource z appears k times in a path p € Strain,
then SE®" contains k replications of p split at
each occurrence of recommendation point z. —
Once that optimal local systems for all z € R
have been found, they can be pieced together
to a global system r : R* — P(R) by delegat-
ing the recommendation task to the appropriate
local model, i.e., r(h) := Thin (h), as there is
no dependency of the recommendations given at
one recommendation point upon those given at
another recommendation point.

We further distinguish between static and
dynamic recommender systems: static recom-
mender systems do not take into account the
former navigation histories of users and provide
a static set of recommendations for all visitors,
while dynamic recommender systems may de-
pend on the histories and provide different rec-
ommendation sets for users with different histo-
ries. Dynamic systems may be build by first par-
tition the histories of the training set S*™" and,
then, compute a static system for each class.

Training sets for static (local) recommender
systems can be described as (multi)sets of fu-
tures Fy C R*, extracted from S via F, :=
{f € R*|3h € Ry : (h,f) € 8t™in}, A simple
recommender system just counts frequencies of
resources y € R in the future paths via

freq(y) := [{f € Fz |y occurs in f}|

and recommends the n most frequent ones. Up
to now, no utility functions have been taken into
consideration. To do so, one has to sum up the
utility values for all resources in the future paths,
e.g., for the distance sensitive utility functions
within (6) one computes the weighted frequen-

cles
wireq(y) := Z q(z, f,v)
JEF:

with ¢ as given in (5) and, again, selects the n
highest valued follow-up resources. Note that
the computation of the weighted frequencies de-
pends on the recommendation point z, but the
recommendation set itself does not, thus, a static
recommender system is generated. By construc-
tion this is the optimal system among all static
recommender systems at .

Dynamic (local) recommender systems make
use of a history partition C = {C},...,Cpn} of
(a superset of) all histories h € R* in the test
set (where m € N is the number of classes). The
test set §'** can be partitioned into test sets
S**|c := {(h, f) € 8*|h € C} for each class
C € C and a static recommender system can be
build for each such class.

While the use of ordinary partitions is
straightforward, fuzzy partitions need additional
information about predicted utilily values for
recommendations given by the static recom-
mender systems for each class. Now, let ¢ =
{wi,...,wn} be a fuzzy partition of the histo-
ries, i.e., all w € C are functions w : R* — [0,1]
with 37 ccw(h) = 1 for all A € R". w(h) is
called weight of h in class w. The static recom-
mender systems for each class w have to provide
a predicted utility value for each recommenda-
tion, i.e., they are maps

rw : R* = [0, 1]®
with recommendation set

rec(h) := {(y,v) € Rx [0,1]|v= ry(h)(y) > 0}

Webkdd'01

To yield recommendations for a given history
h a dynamic recommender system using fuzzy
partitions, first, computes the weights of h for
all classes w, second, computes for all classes
w with w(h) > 0 the (extended) recommenda-
tion set 7 (h), third, adjusts the predicted util-
ity values by the weight w(h) for the class the
recommendations stem from, and, then, chooses
the n recommendations with highest (adjusted)
predicted utility.

A trivial example for a dynamic recommender
system is the one build upon the singleton par-
tition C = {{h}|3f € R* : (h, f) € Strain}, that
we call recommender system based on finest his-
tory partition. As each difference between histo-
ries results in different classes, this recommender
system extremely suffers from overfitting and
therefore performs very poorly on test sets. But
beside the fact that the recommender system
based on finest history partition is a trivial ex-
ample for a dynamic system, it can be useful
for the computation of an upper bound for the
raw recommendation score (that can be achieved
by any recommender system on the underlying
test set), if it is trained by the test set (1) itself,
i.e., the raw recommendation score of the recom-
mender system based on finest history partition
for a test set S**** is the theoretically marimal
raw recommendation score QY. (Stest),

The computation of Q2% requires the build-
ing of a huge amount of static recommender
systems (one for each history), that either may
consume a considerable large amount of mem-
ory or forces several iterations over the test set
database, i.e., can not be done efficiently. If run-
time is an issue, a more pessimistic upper bound
can be computed by choosing the best recom-
mendation for each very history in the test set
in a single loop over the test set database. Note
that this may result in different recommendation
sets for the very same history and, thus, may
never be achieved by a real recommender sys-
tem. But for test sets with many different his-
tories and a decent quality function this bound
is close enough to Qe As in our experiments
in section 6 runtime has not been considered, we
use exact values for Qr®Y.. — Please note that

max is used Lo compute normalized recommen-
dation scores. As the main purpose of normal-
ized scores is the comparison of recommender

27

systems on different data sets or of different loci
of a localized system, its main applications are in
research oriented contexts. For tracking recom-
mender system performance in operational con-
texts raw scores may be used.

Obviously, both, localization (i.e., the deter-
mination of local systems) and the usage of his-
tory partitions can be viewed as application of a
clustering technique to the histories of paths in &
that — based on an adequate similarity criterion
for navigation paths — reduces the global prob-
lem to the handling of subproblems described by
more homogeneous sub(multi)sets §|c, where C'
denotes the class under consideration of the re-
sulting (possibly fuzzy or overlapping) classifica-
tion. Of course, one can combine these possibili-
ties and apply history partitions to Sz, resulting
in Sz|c, or split §|¢ into subsets of navigation
paths with same recommendation point z, re-
sulting in (S|¢)z. Note, that while localization
uses very intuitive classes that do not have to be
computed, the hard part of history partitions is
the computation of the partition itself. There-
fore, one first applies localization and afterwards
computes history partitions for each local sys-
tem. An overview of the architecture of such a
complex system is given in figure 1.

4 Path features

Paths that users have taken on a site belong
to the most valuable information that can be
gained. But paths as sequences of resources of
different lengths are complex objects which are
not that easy to compare and to use in data
mining algorithms. Thus, one is interested in
determining sets of simpler features for path de-
scription (feature extraction).

A substructure space of R" is defined as pair
(A, =) of a set A and a relation < on A x R*
where a € A is called substructure of p € R* if
a=p.

da: R*— {0,1}
L 1, ifa=<p
P 0, otherwise

is called indicator function of substructure a.
Examples of substructures are:

1. sets (P(R), C) of resources, where a set of re-
sources a € P(R) is defined to be a substructure

Webkdd'01

of a path p € R* if all resources & € a occur in
path p,

2. sequences (R"*, <.t), where a sequence a € R*
is defined to be a substructure of a path p if
it is a contiguous subsequence, i.e., it exists
io € {0,...,|p| = |a|} with a; = pi,4i for all
§ = Lo ngi[g]s

3. generalized sequences ((RU {*})*, <gen), i€,
sequences consisting of elements of R and an
additional symbol * used as wildcard, where a
generalized sequence a € (RU {+})" is defined
to be a substructure of a path p if it is a gen-
eralization of a (contiguous) subsequence of p
and generalization means that arbitrary parts of
the sequence may be replaced by wildcards (see
Gaul and Schmidt-Thieme (2000) for an exact
definition),

4, simple generalized sequences (R*, <pt), where
a (simple generalized) sequence a € R" is defined
to be a substructure of a path p if it is a noncon-
tiguous subsequence with the following meaning:
It exists 7 : {1,...,|a]} = {1,...,|p|} strictly
increasing with a; = pj(;) for all i = 1,...,]a|,
i.e., in the context of generalized sequences, if
@y * Ay % - % Alg] Sgen P-

The space of simple generalized sequences can
be viewed as a subspace of the space of general-
ized sequences where a wildcard is interspersed
between each two resources. Notice that in
practical applications only generalized sequences
without a wildcard at the first and/or last po-
sition (i.e., a € (R U {#})* with a;,q, € R)
are of interest. These sequences are called path
Sfragments.

For any substructure space A the symbol
describes the empty substructure (i.e., the empty
set or the empty sequence, respectively) and |a|
the substructure complexity of a € A defined as
cardinality (for sets) or length (for sequences).

Now, we can define a path feature to be a pair
(®,), where @ is an arbitrary set called feature
space and @ : R* — & the feature map mapping
paths to features. For a path p € R* we call
@(p) the @-feature of p.

Trivial examples for path features are its
length (¢ : R* = N,p— |p|) and its entry point
(¢: R* = R,p+— p1). More interesting features
are obtainable via substructures.

From an arbitrary substructure space (A, <)

for by = A

o delegale on
Sustory B, recommendation
poin!, flp.]

for hpy =

class weights [~

~
-~

!
|
|
|
1
!
|
|
I
!
1
L

L dynamic global recommender system

|
I
1
1
|
|
|
|
|
|
J
I
1
I
I
I
|
|
|
|
1
1
1
1

delegate on "’_ -
class weights | - .

’

¢ - \
2 recarnmendalions \
delegate on L= =™ = for class 2 = -~‘1

dynamic local recommender system at X

Webkdd'01

static local recommender systems

recommendations
- for class 1

recornmendalions
for class 2

weight and
o | select besl n

recommendalions
for class ..

recommendation
set r(h)

recommendations
¥ for class 1 \

weight and
4| select best n

~

~ 4 recommendations
for class ...

Figure 1: Architecture of a dynamic global recommender system

we derive its associated path feature
¢: R*— {0,1}4
(d:
p

i.e., a feature space that — for every path p —
contains a binary vector indicating whether an
element a € A is a substructure of p or not.
Feature spaces based on substructures turn
out to have the disadvantage of high dimen-
sionality: the feature space build from subsets
has dimension 2!# the one build from finite se-
quences (if subsequences are restricted to length
n) has dimension Y "I, |R|*. Therefore — given
an underlying (multi)set of navigation paths &
that has to be analyzed — one is looking for
interesting subsets of substructures that result
into a smaller number of dimensions but still
carries as much information as possible for a
description of the objects of (multi)set S (fea-

A= {0,1})

ar da(p)

ture selection). We call a dimension sparse with
respect to S il the corresponding entry in the
binary vector is zero for almost all paths of
(multi)set . In applications, one often can drop
a vast number of sparse dimensions and restrict
to those dimensions for which the percentage of
non-zero entries in the binary vectors exceeds a
lower bound.

Dependent on this bound called minsup fre-
quent substructures of the paths of § can be de-
termined beforehand. For a substructure a € A
one defines its relative frequency

supla) = P52 1B 2P}
s S
as support of a in §. The task to compute all fre-
quent substructures, i.e., the set ®(s minsup) :=
{a € A|supg(a) > minsup} of all substruc-
tures with at least a given minimum support
minsup € R, is well known and accomplished

290

by the Apriori algorithm for sets (Agrawal and
Srikant (1994)), sequences (Agrawal and Srikant
(1995)) and generalized sequences (Gaul and
Schmidt-Thieme (2000)), respectively. Building
the feature space from the frequent substruc-
tures ®(sminsup) only instead of using all sub-
structures of A can reduce the dimensionality
dramatically (depending on the minimum sup-
port and the structure of S, of course). We
call this feature space path features based on
frequent substructures in general, and, in par-
ticular, path features based on frequent subsets,
subsequences, (simple) generalized sequences or
path fragments, etc.

5 Recommender systems
based on frequent sub-
structures of navigation
histories

Frequent substructures of the histories at a re-
source z can be used to build fuzzy partitions for
dynamic local recommender systems. For a local
training set Si" C R} x R* at a recommenda-
tion point z € R let H, :=={h € R} |3f € R" :
(h, f) € St} be the (multi)set of correspond-
ing histories. Let ®; := ®(x, minsup) denote the
set of frequent substructures of H. For each fre-
quent substructure a € ®, we build a class rep-
resented by the weight function wa : Ry — [0, 1].
Note, that the empty substructure @ occurs in
every history by definition and, thus, is frequent
in any case; it serves as class for histories without
any frequent (non-empty) substructures. Ior
h € R: let ®(h) denote the set of frequent sub-
structures occurring in A (including @). The
class weight functions w, are then defined as

via
wa(h) :={ E:I.L(:fu—(bﬁ , forae ®(h)

otherwise

where v : @, — RS‘ is a function that measures
how specific or interesting a frequent substruc-
ture is. v might be set constantly to 1 (not mak-
ing any differences between different substruc-
tures and, thus, weighting them all equally), it
might consider the frequency of a substructure
and be set to the inverse of the support m,

Webkdd'01

or it might consider structural information of a
substructure and be set to the complexity |a| of
a frequent substructure, We will use the second
variant in our experiment in section 6.

Alternatively, one can assign histories only to
classes representing maximal substructures. Let
@™ (h) be the set of maximal frequent sub-
structures of h (especially {0}, if there are no
frequent substructures at all) and compute w,
with ®™2*(h) instead of ®(h).

Partitions based on frequent structures tend
to become rather large for small minimum sup-
port values. A pruning step can decrease the
number of interesting frequent substructures be-
fore the partition is formed and static recom-
mender systems for each class are build. For any
frequent substructure a € ®., all more specific
substructures b € ®, (e.g., supersets, superse-
quences, etc.), that have the same support, can
be removed: as identical support values will lead
to the same class weights and as both frequent
substructures a and b have the same training
sets, i.e., lead to the same static recommender
system, they would create the very same recom-
mendations, and, consequently, the system for
b is superfluous. The reader acquainted with
the notion of closed subsets in the theory of set
based association rules will see the analogy be-
tween this pruning step and the search just for
closed subsets (see, e.g., Zaki and Hsiao (1999));
but note, that while closed subsets are the most
specific ones among all subsets with same sup-
port, here — by contrast — we keep the most
general ones among all substructures with same

support,

6 Examples and experiments

After the theoretical outline we present a series
of small examples to illustrate the capabilities
and shortcomings of the different kinds of rec-
ommender systems based on navigation paths
before an experimental evaluation is described
with the intention to provide a feeling for the ad-
vantages obtainable by application of path fea-
tures.

Figure 2 shows the link graph of a small site
of seven resources R = {A,B,C,D,E,F,G} and
three examples of navigation paths that are all
analyzed at recommendation point C. The paths

Webkdd'01

utility wu: 102 3 4
ug: 1 1.7 21 24
path history future

B D

pr: AC D F @G

prr: ABC F E B

prir: AC F D G D
E = F -G prv: ABC D G F E
a) site graph b) paths of example 1
utility u: 12 3 4 utility u: 102 3 4

up: 1 1.7 2.1 24 ug: 1 1.7 21 24

path history future path history future
pv: BAC D F G PIx: BAC D F G
pvr: ABC F E B Px: ADFEBC F E B
pviIr: BAC F D G D pxr: BAC F D G D
PvIII: ABC D G F E PXII: ABC D G F E

c) paths of example 2

d) paths of example 3

Figure 2: Site graph and sample paths of examples 1, 2, and 3

differ with respect to their histories while their
futures remain unchanged in the different exam-
ples. For simplicity, at most a single recommen-
dation (n = 1) is provided for comparisons.

We start with example 1 and assume that
the underlying system is static and that & =
{pr,pri,prrr,prv} is the (multi)set of naviga-
tion paths under consideration. Without using
utility functions one just counts occurrences of
resources following C: F is the only resource oc-
curring in all four futures and, thus, a recom-
mender system based on mere frequencies would
recommend F. Now, we add a utility distance
uy(d) := d or us(d) :=Ind + 1, respectively; the
utility values for the resources following C are
given in the upper two lines of the tables. Us-
ing utility sums, the recommender system based
on weighted frequencies now computes the u-
utility sum 7 for F and the uy-utility sum 8 for
G or the us-utility sum 5.8 for F and the ua-
utility sum 5.9 for G and — in both cases —
would recommend G instead of F. If a resource
occurs more than once in the future path (as D
in path prrr) only the first occurrence (shortest
empirical distance) is counted.

The recommender system based on finest his-
tory partition recovers two history classes {A}
and {AB}. For class {A} the recommendation
G with uj-utility sum 6 (or ug-utility sum 4.2)
is computed, for class {AB} recommendation
E, also with u;-utility sum 6 (or uz-utility sum
4.1), is found, resulting in a theoretically max-
imal possible recommendation score of 12 for
uy (or 8.3 for uz). Thus, the normalized rec-
ommendation score of the recommender system
based on mere frequencies is 7/12 = 0.58 for u;
(or 5.8/8.3 = 0.70 for uy) while for the system
based on weighted frequencies it is 8/12 = 0.66
for uj-utility summation (or 5.9/8.3 = 0.71 for
ug-utility summation). This part of our small
example was designed to show that the incorpo-
ration of utility distances (other utility functions
are thinkable) leads to the recommendation of
resource G farther apart from recommendation
point C instead of resource F directly linked to
C.

Now we apply the recommender system based
on frequent subsets with minsup = 0.5 to exam-
ple 1. The two frequent subsets {A} with sup-
port 1 and {A,B} with support 0.5 are found and

31

Webkdd'01

lead to a fuzzy partition with 3 classes. For the
static recommender system based on weighted
frequencies that takes into account all histories
containing {A} all four paths are used and con-
sequently G is computed as best recommenda-
tion (the same as for histories containing @), for
the same system that, now, takes into account

all histories containing {A,B} only the paths pr;
and prv are used, so that E is computed as best

recommendation. Thus, the recommender sys- o
tem based on frequent subsets achieves a recom-

mendation score of 1.0. -9

Next, we take example 2 which is a slight mod-
ification of example 1: paths py and pyr; now
start with BA (instead of A as pr and pyyr did).
Consequently, the recommender system based
on frequent subsets recovers only one class of his-
tories {A,B} and, thus, will achieve the recom-
mendation score of 0.70 only. The recommender
system based on frequent subsequences still can
distinguish between subsequences AB and BA
of the histories and achieves a recommendation
score of 1.0 again. -

If we, now, look at example 3 in which only
the history of path px was changed compared to
path py of example 2 by inserting a small devia-
tion DFE between A and BC in the history, the
extraction of frequent contiguous subsequences -
would result in BA only and a distinction be-
tween the two classes found in example 2 would
not be possible. But the recommender system
based on simple generalized subsequences (or @
path fragments) is able to separate the two fre-
quent simple generalized sequences A » B and o
BA in the histories of example 3 and can, thus,
give better recommendations. O

Finally, our findings have been checked on
larger (multi)sets. Table 1 shows the result of
an experimental evaluation of some of the dif- <
ferent recommender systems based on naviga-
tion paths as described earlier. We modeled
four different classes of users navigating a small
site of 20 resources (A-T) with several crossings.
On the basis of an abstract description of user
classes (percentage of total users, templates of
navigation behavior, distributions of variations
etc.) we created a database of 10.000 navigation
paths. 90% of the paths were used as training sel
S§train ¢ build the models, the remaining 10% of
the paths as test set S'** to evaluate the quality

0

N

0.10 0.15 0.18 0.07 0.06 0.05 0.05 0.07 0.08 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.06 0.05
local

L M

K

0.41(0.21 0.31 0.57 0.42 0.36 0.58 0.16 0.67 0.58 0.51 0.14 0.18 0.52 0.57 0.32 0.50 0.15 0.53 0.17 0.50
0.64|0.88 0.69 0.57 0.66 0.73 0.58 0.58 0.67 0.64 0.65 0.67 0.61 0.52 0.60 0.52 0.56 0.55 0.61 0.67 0.54
0.65|0.87 0.71 0.55 0.66 0.73 0.58 0.61 0.67 0.64 0.64 0.69 0.55 0.58 0.69 0.62 0.56 0.64 0.64 0.69 0.56
0.69]0.88 0.71 0.58 0.68 0.78 0.73 0.71 0.67 0.74 0.66 0.71 0.63 0.65 0.74 0.59 0.68 0.67 0.62 0.71 0.63
0.7610.96 0.77 0.63 0.68 0.77 0.80 0.82 0.73 0.78 0.76 0.76 0.73 0.68 0.82 0.70 0.73 0.79 0.79 0.83 0.73
0.7710.96 0.77 0.66 0.67 0.78 0.80 0.83 0.73 0.79 0.80 0.77 0.75 0.69 0.81 0.73 0.74 0.80 0.79 0.86 0.73

glabal
static recommender systems

dynamic recommender systems based on frequent substructures

resources
weights

freq
wireq
seq
sgseq
frag

sets
the percentage of occurrences of each resource in the path data. The column global gives the global recommendation quality for each

recommender system. Furthermore, for the local parts of each recommender system with resource A up to resource T as recommendation
subsequences (seg), r.s. based on frequent simple generalized subsequences (sgseg), and r.s. based on frequent path fragments (frag); all

(actual) recommendation point (freg), r.s. based on weighted frequencies (wfreg), r.s. based on frequent subsets (sets), r.s. based on frequent
recommender systems based on frequent substructures used a minimum support of 0.2.

Table 1: Experimental evaluation of different recommender systems on a small site with 20 resources (A-T). The row weights describes
point the quality is given. The following recommender systems (r.s.) are evaluated: r.s. based on frequencies of resources following the

of the models and compute the recommendation
scores. We used the utility function uy and al-
lowed only a single recommendation at each re-
source (n = 1). As expected, the use of simple
frequencies (model freg) resulted in a low global
recommendation score of 0.41, for the local ver-
sions the quality dropped below 0.15 at some of
the resources. Using this as baseline, the model
based on weighted frequencies (wfreq) that takes
into consideration the special form of the util-
ity function achieves an overall improvement in
global quality of over 50% (global recommen-
dation score 0.64). As we put strong sequential
effects in the navigation patterns of the different
user classes, dynamic recommendations based
on frequent sets (sets) do not result in a better
global score (0.65), but using sequences (seg) or
even better simple generalized sequences (sgseq)
or path fragments (frag) further improvements of
the global recommendation quality were possi-
ble (by another 32% with respect to the baseline
score (see the global recommendation scores of
0.69, 0.76, and 0.77, respectively)). In all cases,
the frequent substructures for the dynamic mod-
els have been extracted with a minimum support
of 0.2 (the smallest expected user segment size
for the data set).

The local quality scores show that not in all
cases (i.e., at all recommendation points) the
same ranking as for the global recommendation
quality values can be observed. This is due to
the fact that at some recommendation points se-
quential effects were not strong enough in the
data so that local recommender systems based
on path substructures could not take advantage
of some of the path features, and/or due to the
choice of the same minimum support for all lo-
cal recommender systems, that is responsible for
small overfitting effects in some of the local sys-
tems.

Of course, findings depend on the structure of
the user segments. If only few sequential effects
are in the data, the more complex models can
not show their strengths and give similar results
than the other models. In another experiment
with 10.000 users in 10 segments (of size 10%
each) on a small site with 100 resources, where
crossings of navigation paths occurred by chance
only, the global scores of table 2 were yielded (we
omit the values of the Jocal systems).

Webkdd’01

| sgseq | frag |

| 040 [0.41 |

| freq | wireq | sets | seq
[0:27]70.37 [0.40 [0.40

Table 2: Experimental evaluation of different
recommender systems on a small site with 100
resources. and only few sequential effects in the
data

7 Outlook

A framework for recommender systems based on
navigation paths has been presented and the in-
fluence of different path features On recommen-
dation quality considerations was theoretically
discussed and empirically demonstrated. We de-
veloped a generic method to measure the quality
of recommender systems in terms of a the (nor-
malized) recommendation score, so that differ-
ent systems can easily be compared, and gave ex-
amples for recommender systems based on navi-
gation paths that made use of frequent substruc-
tures in the path histories.

Future work should address questions as prun-
ing based on substructure partitions, automati-
cally finding optimal support values, as wel] as
comparing our results to those of history parti-
tions obtained by approaches different from fre-
quent substructures. Beside theoretical work on
mathematical modeling of recommender systems
an empirical evaluation of how they are used
(and liked) by site visitors s one of the urgent
questions in the field,

References

Agrawal, R. & Srikant, R. (1994). Fast Al-
gorithms for Mining Association Rules.
In Bocea, J.B., Jarke, M., & Zaniolo,
C. (Eds.), Proceedings of the 20th Inter-
national Conference on Very Large Data
Bases (VLDB’9{), September 12-15, 1994
(Pp. 487-499), Santiago de Chile, Morgan
Kaufmann, Chile.

Agrawal, R. & Srikant, R. (1995). Mining Se-
quential Patterns. In Yu, P.S. & Chen,
A.L.P. (Eds.), Proceedings of the Eleventh
International Conference on Data FEngi-
neering, March 6-10, 1995 Taipei, Taiwan,
IEEE Computer Society, pp. 3-14.

33

Bestavros, A (1996): Speculative Data Dissem-
ination and Service to Reduce Server Load,
Network Traffic and Service Time. In Pro-
ceedings IEEE Conference on Data Engi-
neering (ICDE’96), pp. 180-189.

Bodner, R.C. & Chignell, M.H. (1999).
ClickIR: Text Retrieval Using a Dynamic
Hypertext Interface. In Proceedings of the
Seventh Text Retrieval Conference (TREC-
7), Gaithersburg, Maryland.

Breese, J.S., Heckerman, D. & Kadie, C.
(1998). Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. In
Proceedings of the Fourtheenth Conference
on Uncertainty in Artificial Intelligence,
Madison, WI, July, 1998.

Cooley, R., Mobasher, B., and Srivastava, J.
(1999): Data Preparation for Mining World
Wide Web Browsing Patterns. In Knowl-
edge and Information Systems 1/1 (1999),
pp. 5-32.

Fu, X., Budzik, J.,& Hammond, K.J. (2000).
Mining Navigation History for Recommen-
dation. In Proceedings of the 2000 Interna-
tional Conference on Intelligent User In-
terfaces, New Orleans, LA, January 2000,
pp. 106-112.

Gaul, W. & Schmidt-Thieme, L. (2000). Min-
ing web navigation path fragments. Pro-
ceedings of the WEBKDD’2000 workshop,
Boston, 2000.

Joachims, T., Mitchell, T., Freitag, D.,& Arm-
strong, R. (1995). WebWatcher: Machine
Learning and Hypertext. In Morik, K. &
Herrmann, J. (Eds.), GI Fachgruppentr-
effen Maschinelles Lernen, University of
Dortmund, August 1995.

Lieberman, H. (1995). Letizia: An Agent That
Assists Web Browsing. In 1995 Interna-
tional Joint Conference on Artificial Intel-
ligence, Montreal, CA, 1995.

Mobasher, B. (2001). Mining Web Usage Data
for Automatic Site Personalization. To ap-
pear in Gaul, W.,& Ritter, G. (Eds.), Clas-
sification, Automation, and New Media,
Springer.

Perkowitz, M. & Etzioni, O. (1998). Adaptive
Web Sites, Automatically Synthesizing Web

Webkdd'0]

Pages. In Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence,
Madison, WI.

Resnick, P., lacovou, N., Suchak, M.,
Bergstrom, P.& Riedl, J. (1994). Grou-
pLens: An Open Architecture for Collab-
orative Filtering of Netnews. In Proceedings
of the Conference on Computer Supported
Cooperative Work, Chapel Hill NC, 1994,
pp. 175-186.

Sarwar, B., Karypis, G., Konstan, J.A. &
Riedl, J. (2000). Analysis of Recommenda-
tion Algorithms for E-Commerce. In ACM
Conference on Electronic Commerce (EC-
00).

Schafer, J.B., Konstan, J.A.,& Riedl, J. (1999).
Recommender Systems in E-Commerce. In
ACM Conference on Electronic Commerce
(EC-99), pp. 158-166.

Schafer, J.B., Konstan, J.A.,& Riedl, J. (2000).
Electronic Commerce Recommender Ap-
plications. Journal of Data Mining and
Knowledge Discovery 5/1, pp. 115-152.

Stotts, P.D. & Furuta, R. (1991). Dynamic
Adaptation of Hypertext Structure. In
Third ACM Conference on Hypertext Pro-
ceedings, Association of Computing Ma-
chinery.

Yan, T.W., Jacobsen, M., Garcia-Molina, H.,&
Dayal, U. (1996). From User Access Pat-
terns to Dynamic Hypertext Linking. In
Fifth International World Wide Web Con-
ference, May 6-10, 1996, Paris, France.

Zaki, M. & Hsiao, C.-J. (1999). CHARM: An
Efficient Algorithm for Closed Association
Rule Mining. RPI Tech. Report. 99-10.

