Mining Web Navigation Path Fragments

Wolfgang Gaul and Lars Schmidt-Thieme

Institut fiir Entscheidungstheorie und Unternehmensforschung,
University of Karlsruhe, D-76128 Karlsruhe, Germany
{ Wolfgang.Gaul, Lars.Schmidt-Thieme } @wiwi.uni-karlsruhe.de

Summary: For many web usage mining applications like, e.g., user segmen-
tation, it is crucial to compare navigation paths of different users. We model
user navigation path fragments by generalized subsequences that take into
consideration local deviations but still sketch the global user navigational
behavior. This paper presents a new algorithm of apriori type for mining all
generalized subsequences of user navigation paths with prescribed minimal
occurrence from a given database.

1. Introduction

E-commerce needs web usage mining that aims at considering different
phases of consumer behavior, extending the focus from classical buying be-
havior analysis to data mining of different kinds of contacts with (potential)
customers. User navigation paths in the web or even fragments of visits
of websites establish an important source of information. For most higher
level analytical tasks and applications like user segmentation, recommender
systems etc., paths of different users have to be compared. Most path dis-
tances can be viewed as ordinary distance measures on a feature space of path
fragments. As this space turns out to be high-dimensional and sparsely pop-
ulated, dimension reduction schemes are needed. One such scheme consists
in selecting the subspace spanned by frequent path fragments.

There are different kinds of fragments: The simplest kinds of fragments
are occurrences of single pages or sets of pages in a user path. Frequent
page sets can be mined by the standard apriori algorithm (see Agrawal and
Srikant (1994)). As subsets neglect the sequential structure of user paths,
better choices for path fragments are subsequences. Frequent contiguous
subsequences can be mined by a well known variant of the apriori algorithm
(see Agrawal and Srikant (1995) with modifications by Srikant and Agrawal
(1996)). Borges and Levene (1998 and 1999) have developed algorithms for
sequence mining on aggregated data. As a third kind of path fragments gen-
eralized subsequences containing wildcards have been proposed in the web
mining literature (see Spiliopoulou (1999)). Generalized subsequences sketch
the global navigational behavior of users. Several algorithms exist to mine
frequent generalized subsequences of a specified type (called templates, i.e.,
subsequences with prescribed positions of wildcards, see Spiliopoulou (1999)
and Buechner et al. (1999)). Other authors following a broader approach

249

250

have constructed algorithms to find frequent subsequences of pages with at-
tached attributes and relations (called generalized episodes, see Mannila and
Toivonen (1996)). While those algorithms are perfectly suited for use in
interactive analysis, a general algorithm mining all frequent generalized sub-
sequences (of a given minimal support) still is missing. In this paper we
describe a new algorithm that fills this gap.

2. Formal Background

Let R be an arbitrary set of resources extracted from a webserver’s logfile,
where the navigational behavior of anonymous visitors has been recorded,
and R* 1= [J;ey R' U {0} the set of finite sequences of elements of R (with
0 as the empty sequence), here used to model user paths. For a sequence
z € R* the length |z is the number of symbols in the sequence (|z| :== n for
z € R", |0 := 0). Let z,y € R* be two such sequences. We say that r is
a subsequence of y (z < y), if there is an index i € {0,...,|y| = |z[} with
Tj=Yie; Vi=1,...,lz]. xis a strict subsequence of y (x < y), if it isa
subsequence of y but not equal to y (z S YA T #).

A pair of sequences T,y € R" is overlapping on k € Ng elements, if the last
k elements of = are equal to the first k elements of y (Tiast—k+i = Ui Vi =
1,...k). For such a pair of sequences x,y € R* overlapping on k elements we
define the k-telescoped concatenation of x and y to be

$+ky:= (1711---,xlast.—ksylw--aylast)
= (Ilv“'a:r]a.st-yk+11--'=yla5t)'

Note that any two sequences are 0-overlapping and the 0-telescoped concate-
nation of two sequences is just their arrangement one behind the other. For
a pair of sets of sequences X,Y C R* we denominate the set of k-overlapping
pairs £ € X,y € Y by X @, Y and the set of k-telescoped sequences of all
k-overlapping pairs shortly as the set of k-telescoped sequences of X and Y:

X+xYi= +p(X@Y)
={z+ry | € X,y €Y are over-
lapping on k elements}.

Now let S be a finite list of such sequences z € R* (allowing multiplicities
if different users take the same path). For an arbitrary sequence = € R* we
denominate the relative frequency of sequences of S containing z as subse-
quence as support of x with respect to S:

sups(x) = ee Sl.lS‘|I < s}

The task of searching all frequent subsequences in the given list of se-
quences S means to find all sequences = € R* with at least a given minimal

251

support, i.e. with supg(z) > minsup and minsup € R* a given constant. As
the support of subsequences of a sequence is greater than or equal to the sup-
port of the sequence itself, one can build frequent subsequences recursively
starting from the sequences of length n = 1. With all sequences of length 1 as
initial set of candidates the algorithm performs two steps: first, it computes
the support values of all candidates and selects those candidates as frequent
subsequences that satisfy the minimal support constraint; second, it builds
a new set of candidates of length n + 1 for the next step by trying to join
frequent subsequences of length n in the following manner: two sequences ¢
and d of length n are joined to a sequence of length n + 1 if they overlap
on n — 1 elements, i.e. (ca,...,c,) = (d1,...,dp—1); the joined sequence is
¢ +pn—1 d. Algorithm 1 gives the formal description of this procedure.

Algorithm 1 Apriori algorithm adapted for sequences
Require: set of items R (resources), list S of (finite) sequences (user paths)
of elements of R, minimal support value minsup € R*.
Ensure: set of frequent subsequences F' := | J, .y Fr of the sequences of §
with support of at least minsup.
C := {{r} | r € R} set of initial candidates,
ni= L
while C' # () do
compute supg(c) Ve € C by counting the number of occurrences of
each ¢ in S (one loop through S).
F, :={ce C | supg(c) > minsup}
C :=F, 4n-1 F, {compute new candidate sequences with length n+1}
n:i=n+1
end while

Please note, that for the special case of sequences describing paths on a
graph, in the first join step only O-overlapping pairs of sequences of length
1, i.e., pairs of nodes of the graph, have to be considered that are linked
by an edge. — This adaption of the classical apriori algorithm for sets (see
Agrawal and Srikant (1994)) to sequences has first been published by Agrawal
and Srikant (1995) (with modifications by Srikant and Agrawal (1996)). It
has been used for finding subsequences in web mining paths by Chen et
al. (1996) and other authors afterwards (Viveros et al. (1997), Chen et al.
(1998), Cooley et al. (1999)).

3. Mining Frequent Generalized Subsequences

By a generalized sequence in R we mean a (finite ordinary) sequence in
the symbols R U {*} with an additional symbol » & R called wildcard, such
that no two wildcards are adjacent:

252

RE" = {z € (RU{x})" | Bi € N:ai = zip1 = %}

The wildeard symbol * is used to model partially indeterminate sequences,
matching arbitrary subsequences. This notion of generalized sequence first
has been introduced in web mining literature by Spiliopoulou and Faulstich
(1998). For a generalized sequence x € R5" we define its length |z| as the
length of the sequence in the symbols RU{*}, i.e., [z| :=n, if z € (RU{*})™.
Now let z,y € RE" be two generalized sequences. We say that = matches y
or y generalizes x (y b x), if there exists a mapping

m:{Ll,....|z|} = {1,...,|yl}
(called matching) with the following properties:

1. m maps indices of elements of z to indices of elements of y that coincide
or to a wildeard (Ym(i) = Ti OF Ym(i) = *)-

2. m covers all indices of y of non-wildcard elements (y; € R = m™'(i) #

0).
3. m is weakly monotonic increasing.

4. m is even strictly monotonic at places where its image does not belong
to a wildcard
(m(i) = m(i +1) = Ymei) = *)-

Please note that as the set of ordinary sequences R* is a subset of the
set of generalized sequences R®®", this also defines the notion of an ordi-
nary sequence matching a generalized sequence. Obviously matchings are
not uniquely determined by two generalized sequences x and y. A triv-
ial example is *Ax - AA with the two matchings m; = {(1,1),(2,2)} and
ma = {(1,2),(2,3)}. Finally we carry over the notions of subsequence and of
k-telescoped concatenation from ordinary sequences to generalized sequences
without any change. Note the difference between A = C not being a subse-
quence of ABCD but matching a subsequence of it (i.e. AxC - ABC and
ABC < ABCD,).

Again, let S be a finite list of ordinary sequences (user paths) = € R*.
For an arbitrary generalized sequence z € R5¥" we denominate the relative
frequency of sequences containing a subsequence which matches z as support
of = with respect to S:

eS|Iy<s:zhk
spele) = oS8 |3y So:xbs)

Now, mining frequent generalized subsequences is the label for the task to
find all generalized sequences with at least a given minimal support. As we

253

Table 1: Construction of closed generalized subsequences of length > 4.

sequence length sequence length

ab...cd n+1 axb...cd n+1
= ab...c n = axb...c n
+n=1 b...ed n +n-2 b...ed n-1

ab...cxd n+l1 axb,..cxd n+1
= ab...c n-1 = axb...c n-1
Fn—n b...ckd n +n-3 b...cxd n-1

are looking for subsequences anyway, we can narrow our view to closed gener-
alized subsequences, i.e. generalized subsequences without leading or trailing
wildcard (z € RE" with , 2. € R), that we call path fragments.

Up to now no general algorithm for finding all frequent generalized sub-
sequences in a list of sequences is known. Spiliopoulou (1999) has invented
an algorithm for finding frequent generalized subsequences in a limited sub-
space of the search space: her generalized sequence miner (GSM) looks for
generalized sequences of a given length and wildcards at given positions (such
subspaces are described by so called templates; see Buechner et al. (1999) for
another approach using templates to limit the search space; templates are
useful in the framework of interactive tools like WUM, see Spiliopoulou and
Faulstich (1998) and Spiliopoulou et al. (1999)).

We present a modification of the apriori algorithm for sequences to path
fragments, resulting in a general algorithm for finding frequent generalized
subsequences. The idea is pretty simple. As we are looking only at closed
generalized sequences, the support of any subsequence of such a closed gener-
alized sequence again is greater than or equal to the support of the sequence
itself. Now, as adjacent wildcards are not allowed, we can get every path
fragment of length n + 1 (for n > 3) as junction of two overlapping path
fragments of the kind described in table 1.

Thus, we only have to modify the join step of the apriori algorithm for
building new candidates of length n + 1 in such a way that we not only use
the frequent (closed generalized) subsequences of length n but also those of
length n — 1 from the step before, and try all possible combinations. Closed
generalized subsequences of length 3 containing a wildcard have the form
(z,%,y) with z,y € R, shorter closed generalized subsequences cannot contain
wildcards.

Algorithm 2 gives the exact formulation of the necessary comparisons. Of
course, the computation of the support values of the candidate generalized
sequences also has to be modified. The performance characteristics of the
algorithm is the same as for the apriori algorithm for ordinary sequences: to
find sequences of length n, n loops through the database have to be accom-
plished.

254

Algorithm 2 Apriori algorithm adapted for generalized sequences
Require: set of items R (resources), list S of (finite) sequences (user paths)
of elements of R, minimal support value minsup € R,
Ensure: set of frequent (closed) generalized subsequences F' := | J, oy Fy of
the sequences of § with support of at least minsup.
C:={{r} | » € R} set of initial candidates,
ni=1, Fp:=0.
while C # (O or F,,_, # (1 do
compute supg(e) Ve € C by counting the number of occurrences of
each ¢ in S (one loop through §).
F, :={ce C | supg(e) = minsup}
C = Fy, +n-1 Fy {compute new candidate sequences with length n+1}
if n =2 then {introduce wildcards}
C:=CU{(z,%y) | z,y € Fa1}
else if n > 2 then {additional joins considering wildcards}
c =C
U{z +n-2y | (2,y) € Fr ®n-2 Fn1,
Ty = *}
U{:L‘ +n-2¥ | (2,Y) € Fae1 @n-2 F,
Yiast —1 = *}
U{I +n-3 Yy I (.'L'., y) e Fn—l B3 Fn—ls
T2 = Ylast -1 = *}

end if
n=n+1l
end while

As algorithms of the apriori type return all subsequences of the frequent
sequences found, one often prunes the result set by removing all subsequences
of a frequent sequence contained in the result set, thus retaining only the
"maximal” subsequences:

F':={ceF |Ade F:c<d}

For generalized subsequences the algorithm also returns all generalizations
of all subsequences found. Reasonably one prunes the result set further, by
removing all generalizations of a sequence contained in the result set, thus
retaining only the "most concrete” subsequences:

F':={ceF |Ade F:ctd}

We call these two pruning steps subsequence pruning and generalization

pruning, respectively.

4. Example and Experiments
Figure 1 shows a simple example web site and some paths traveled on

255

A
il P
N AN SN

E+«F+G H=I<-J K=L<=M

(a) site graph

path

ABEF(EB)CHIJ
ACBE(BC)HI(HC)D

BCJ(C)HI
ABG(B)E(B)CH(C)I(C)D
ABEFG(FEB)CH(C)JI
ACJI(C)D(C)B(C)HI
BEFG(FEB)CHIJ(IHC)DKLM
ABF(B)CIH(I)J
ADK(D)L(D)AB(A)CHI
ABEFG(FEBA)CJ(C)HI(HC)D
ABCD(C)HILJ(IHCD)M
CBF(BC)H(C)DK(DC)I(CDKDCHCB)E

= =4
(=S B - A e

—
—

—
o

{b) analyzed paths

Figure 1: Example web site and example set of paths.

the site. Looking for ordinary frequent subsequences by applying the apriori
algorithm for sequences (algorithm 1) does not give very useful results here:
one finds the sequences CHI with a support of 8/12 and BCH with a support
of 7/12. The first sequence containing more than three resources appears at
support 5/12: EBCH.

Searching for frequent generalized sequences with algorithm 2 results in
the set of three sequences with high support: B«CxH«I with support 12/12
and two lightly more specialized sequences BxCHxI and BCxH+l with sup-
port 11/12 and 10/12 respectively. Of course, the algorithm finds all literal
subsequences of these sequences as well as all more general sequences (like
BxHxI etc.), but these less useful subsequences are pruned by the two prun-
ing steps (subsequence pruning and generalization pruning) presented at the
end of section . — Already this simple example gives some insights into the
good properties of generalized sequences: first, they are more robust than or-
dinary sequences against artifacts coming from navigation path construction
steps; second, they can cope with local deviations of the navigation paths,

256

thus resulting in longer paths with higher support values, i.e. they better
sketch user navigational behavior in the large, contrary to local descriptions
by ordinary subsequences.

We tested our algorithm for path fragments systematically with synthetic
data. The data has been created by randomly instantiating a set of naviga-
tion templates. Each template describes the navigational behavior of a user
segment by a generalized sequence (that may be open) and a distribution of
the lengths of the replacements of the wildcards as well as its relative size
by a weight. A navigation template is instantiated by randomly filling in the
wildcards with concrete resource sequences.

Figure 2 shows the experimental results. We created datasets of different
sizes from a set of 5 templates with relative sizes 0.3, 0.3, 0.2, 0.1, and
0.1, and N(4,2)-distributed replacement lengths on a site of 100 resources.
— We implemented the Apriori algorithm for sets and our adaptation for
path fragments using prefix trees (see, e.g., Mueller (1995)) in Java. All
experiments have been run on the IBM JVM 1.3 on an Athlon-600 Linux-PC
with 256 MB RAM.

Figure 2a shows the execution time for datasets of different sizes. As
expected the execution time increases linear in the size of the dataset. The
apriori algorithm for sets is only between 1 and 5% faster on this dataset. In
figure 2b the dependency of the execution time on the minimum support is
depicted in comparison to the execution times of the Apriori algorithm for
sets. In both cases one can clearly see the steps in the performance curve at
the support values that correspond to the weights of the user segments (0.3,
0.2, and 0.1). Figure 2c shows the execution times that the algorithms spends
on the individual passes (i.e., for sequences of degree 1, 2, etc.). As support
values for single items are computed in parallel with reading the data, the
execution time for pass 1 includes the time for file I/0. For minimum support
0.2 most items are not frequent, so the algorithm has not much to check.
For minimum support 0.1 all items are frequent and the main part of the
computation time is spend on sequences of length 2 (20000 candidates have
to be checked). For an even lower minimum support of 0.05 the frequent
sequences of length 2 are common enough to yield a large pool of candidates
of length 3 (ca. 15000 candidates).

5. Applications to Association Rules and Recommender
Systems

As the retrieval of frequent (generalized) subsequences is the hard part of
the generation of association rules, we can easily apply our algorithm to find
association rules with prescribed minimal support and confidence. An associ-
ation rule is (described by) a pair of (generalized) sequences r,y € REe" with
the meaning that if z (the body of the rule) has occurred then — under con-
ditions to be explained in the following — y (the head of the rule) will occur,

100 =

execution time [s|

260000

(a) Execution time depending on dataset size.

160 7

00000

750000

le+06

1.250+06

datuset size [mumber of paths)

Lhe+06

1

140 |- 1
i

120 - x|
100 = \k
1

80 =

execution time [s|

T
unnt:ml!zml BRUEnCeN

sy

+
=

support

(b) Execution time depending on minimum support

(size of dataset: 500000).

execution time [s|

nup;}ur: 0.20 ===u

support 0,10
spport 0,06 -

(c) Execution time depending on pass (size of dataset:

500000).

Figure 2: Experimental results.

257

258

too, where occurrence is related to the underlying list S of sequences. We
suggest different interpretations of the rule notation that all have their origin
in the web site traversal behavior of users as reconstructed via path comple-

tion and depicted in S. First, x - y =z +1y = (T1,..., Tlast = Y1, -+ Ylast)
which best corresponds to the usage of ordinary navigation paths. Second,
T Yy Erxy = (Tr,..., Tlasty* Y1y+ - Ylast), 1.€., a wildcard is used to

combine x and y. Both cases can be handled with the tools described so far.
In addition to

supg(r — y) :=supg(r+,y) or

sups(z ~ y) = sups(z *y)

we need the confidence

confs(z — y) = Supslzhy) o

sups ()
confs(z ~+ y) 1= pslery)
a number that counts the occurrence of z +, y or z + y given x.

From early papers on web usage mining, the idea of feeding back the
usage information extracted from the logfiles to the hyperlink structure of
the underlying website has been suggested as an application of the results
found by various data analysis tasks (see Yan et al. (1996)). Recently this
idea has been revived by the name of recommender system making use of
frequent item sets and association rules (see Mobasher (2000)). The paths of
active users are compared to the left sides (the bodies) of a rule set previously
extracted from the logfiles and (parts of) the right sides (the heads) of the
matching rules with highest confidence are recommended via dynamically
included direct hyperlinks.

Using only sets of resources (and not sequences) as the base for recommen-
dations has the drawback of neglecting the order of the navigation patterns,
and, thus, may result in directing users back to resources, they might no
longer have an interest in. On the other hand, using ordinary subsequences
as base for recommendations retains the order information, but only catches
local navigational behavior. Generalized subsequences, i.e. path fragments,
combine the strengths of the two methods, retaining order and not being
bound to local behavior (by allowing deviations).

Let us go back to our simple example from above and look at user 9.
Imagine he has already done ADK(D)L(D)AB(A)C. Using frequent ordinary
subsequences we cannot recommend a next resource, because no subsequence
of the frequent literal subsequences (CHI, BCH, BCHI and EBCH) can be
found in his partial path. But the subsequence BxC of the frequent general-
ized subsequence BxCxH#I matches a subsequence of the tail B(A)C of his
partial path. Thus, using the association rules B#C~+H and B*C~+1 (both
with support and confidence 1) we can recommend H and I for subsequent
browsing, exactly the resources, he visits afterwards,

259

6. Outlook

Path fragments described by frequent closed generalized subsequences are
ideal candidates to describe the user navigation path space, and thus the
basis of distance computations of user paths, which in turn are necessary for
clustering user paths. We will report about user path clustering resting upon
path fragments in an upcoming paper.

References:

Agrawal, R. and Srikant, R. (1994): Fast Algorithms for Mining Association Rules.
In: Bocca, J.B., Jarke, M., and Zaniolo, C. (eds.): Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases (VLDB’9/), September 12-15, 1994,
Santiago de Chile, Morgan Kaufmann, Chile, 487-499.

Agrawal, R. and Srikant, R. (1995): Mining Sequential Patterns. In: Yu, P.S., and
Chen, A.L.P. (eds.): Proceedings of the Eleventh International Conference on Data
Engineering, March 6-10, 1995, Taipei, Taiwan, IEEE Computer Society, 3-14.
Borges, J. and Levene, M. (1998): Mining Association Rules in Hypertext Databases.
In: Agrawal, R. (ed.): Proceedings / The Fourth International Conference on
Knowledge Discovery and Data Mining, August 27 - 31, 1998, New York, New
York, Menlo Park, Calif., 149-153.

Borges, J. and Levene, M. (1999): Data Mining of User Navigation Patterns.
In: Proceedings of the Workshop on Web Usage Analysis and User Profiling (WE-
BKDD’99), August 15, 1999, San Diego, CA, Springer, 31-36.

Buechner, A.G., Baumgarten, M., Anand, S.S., Mulvenna, M.D., and Hughes, J.G.
(1999): Navigation Pattern Discovery from Internet Data. In: Proceedings of the
Workshop on Web Usage Analysis and User Profiling (WEBKDD’99), August 15,
1999, San Diego, CA, Springer, 25-30.

Chen, M.-S., Park, J.S., and Yu, P.S. (1996): Data Mining for Path Traversal Pat-
terns in a Web Environment. In: Proceedings of the 16th International Conference
on Distributed Computing Systems (ICDCS), May 27-30, 1996, Hong Kong, IEEE
Computer Society, 385-392.

Chen, M.-S., Park, J.S., and Yu, P.S. (1998): Efficient Data Mining for Path
Traversal Patterns. [EEE Transactions on Knowledge & Data Engineering 10/2
(1998), 209-221.

Cooley, R., Mobasher, B., and Srivastava, J. (1999): Data Preparation for Mining
World Wide Web Browsing Patterns. In 9th International Conference on Tools
with Artificial Intelligence (ICTAI '97), November 3-8, 1997, Newport Beach, CA.

Mannila, H., and Toivonen, H. (1996): Discovering generalized episodes using
minimal occurrences. In: The Second International Conference on Knowledge Dis-
covery and Data Mining (KDD '96), Portland, Oregon, August 2-4 1996, 146-151.
Mobasher, B. (2000): Mining Web Usage Data for Automatic Site Personalization.
To appear in Studies in Classification, Data Analysis, and Knowledge Organization
2000.

Mueller, A. (1995): Fast Sequential and Parallel Algorithms for Association Rule
Mining: A Comparison. Department of Computer Science, University of Maryland-
College Park, CS-TR-3515.

260

Spiliopoulou, M. and Faulstich, L.C. (1998): WUM: A Tool for Web Utilization
Analysis. In: Atzeni, P., Mendelzon, A., and Mecca, G. (eds.): The World Wide
Web and Databases, International Workshop WebDB’98, Valencia, Spain, March
27-28, 1998, LNCS 1590, Springer, 184-203.

Spiliopoulou, M., Faulstich, L.C.; and Winkler, K. (1999): A Data Miner Ana-
lyzing the Navigational Behavior of Web Users. In: Proc. of the Workshop on
Machine Learning in User Modeling of the ACAI'99 Int. Conf., Creta, Greece,
July 1999,

Spiliopoulou, M. (1999): The Laborious Way from Data Mining to Web Mining.
Int. Journal of Comp. Sys., Sei. & Eng. 14 (1999), Special Issue on “Semantics
of the Web”, 113-126.

Srikant, R. and Agrawal, R. (1996): Mining Sequential Patterns: Generaliza-
tions and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., and
Gardarin, G. (eds.): Advances in Database Technology - EDBT'96, 5th Interna-
tional Conference on Extending Database Technology, Avignon, France, March 25-
29, 1996, Proceedings. LNCS 1057, Springer.

Viveros, M.S., Elo-Dean, S., Wright, M.A., and Duri, S.S. (1997): Visitor's Be-
havior: Mining Web Servers. In: Proceedings of the 1st International Conference
on the Practical Application of Knowledge Discovery and Data Mining, Blackpool
1997, 257-269.

Yan, T.W., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996): From User
Access Patterns to Dynamic Hypertext Linking. In: Fifth International World
Wide Web Conference May 6-10, 1996, Paris, France.

