Behaviormetrika
Vol.29, No.1. 2002, 1-22

RECOMMENDER SYSTEMS
BASED ON USER NAVIGATIONAL BEHAVIOR
IN THE INTERNET

Wolfgang Gaul and Lars Schmidt-Thieme*

Starting from data available about (anonymous) visitors of a website, pos-
sibilities of extracting information as well as enriching pure browsing patterns
with the help of business measures (e-metrics) and detecting possibly negative
effects of web robots are sketched as prerequisites for interpretation purposes of
the navigational behavior of internet users. Problems with the reconstruction of
user navigation paths are explained and different heuristics for path completion
are discussed. Additionally, several kinds of features of user navigation paths
(e.g., sets, sequences, path fragments) have to be mentioned to prepare for an
adequate theoretical background concerning recommender systems that can be
used for tasks as different as site personalization, cross-/up-selling, and naviga-
tion assistance. A vocabulary to describe different kinds of recommender systems
and generic quality measures for system evaluation are formulated. Then. spe-
cific recommender systems, especially systems based on frequent path features,
are defined and evaluated in a final experiment. In an outlook directions for
future research on recommender systems are given.

1. Introduction

Content mining and usage data mining in the web as one of the fastest growing
sources of information is a challenge for data analysts. In this paper, we concen-
trate on usage behavior information and discuss the employment of recommender
systems for this kind of data. In Section 2 we start with some basic facts con-
cerning information extraction from web server log data that can be composed
to so-called e-metrics to help site owners to successfully design their e-businesses.
Within this site-oriented point of view web robots are just troublemakers that
— sometimes unauthorized — gather business intelligence from the visited sites,
distort usage data distributions of mining systems, and may consume considerable
site server resources. Against this background, navigation path reconstruction of
internet users from web server log data is of interest and and taken as starting
point for the application of data mining algorithms of Apriori type. In Section 3,
we explain how different path features, e.g.. sets, sequences, simple generalized
sequences, and path fragments can be considered for modeling navigational be-
havior. Given these possibilities to analyze web usage data, Section 4 is devoted
to recommender systems, especially recommender systems that can use navigation
path information as input. In Section 5, some examples and experiments are pre-
sented that allow a comparison of recommendations obtained on the basis of the

Key Words and Phrases: Internet user navigational behavior, web mining, recommender

systems, web robots, e-metrics,

Institut fiir Entscheidungstheorie und Unternehmensforschung University Karlsruhe,
Germany. E-mail: {Wolfgang.Gaul, Lars.Schmidt-Thieme }@wiwi.uni-karlsruhe.de

2 W. Gaul and L. Schmidt-Thieme

different navigation path features mentioned before. In an outlook, in Section 6,
hints concerning future research activities with respect to recommender systems
are given.

2. Web Usage Data Analysis

In this chapter, some basic facts concerning the analysis of web usage behavior
information are sketched and prerequisites for the understanding of the more
formal and mathematical parts of the paper are put together.

2.1 Straightforward information extraction and e-metrics

Starting point is the site server’s logfile that lists all HT'TP-requests in the ol
order they occur. Figure 1 shows a sample of such a logfile. Each HTTP-request
is represented by a one-line-logfile-entry in the combined logfile format which is
the most often used variant of the extended logfile format that has replaced the
older common logfile format (see Hallam-Baker & Behlendorf, 1996).

Each one-line-entry of Figure 1 consists of the following nine fields

[ip] [name]login] [date] [request] [status|[size][referrer] [agent]

with [ip] as numerical address of the client host (ip address), [name] as name
of the user, [login] as login of the basic HTTP-authentication given by the user,
[date] as date and time of the request, [request] as HTTP-request line containing
the request method, the URL of the requested resource (page), and the desired
HTTP-protocol, [status] as 3-digit status code returned by the server, [size] as
size (number of bytes) of the resource actually returned by the server, [referrer]
as URL of the resource containing the link to the requested resource, and [agent]
as name of the client agent (browser).

Given the just described logfile information simple usage statistics can easily
be computed, e.g., about the home countries of site visitors (resolving IP addresses
to DNS names), the providers they use, the web sites they come from (including
search keywords used to retrieve a link to the underlying site). the resources
requested most often on the site, and the time (day of the week and time of the
day) of certain requests.

Checking all the information that can be and has been stored in site server logs
an immediate conclusion is to ask for characteristic numbers to measure web site
success. As distinction from traditional business measures and success-tracking
techniques these characteristic numbers are called e-metrics (NetGenesis (2000)).
Here, basic concepts like hits (which rather reflect site design than customer be-
havior), page views (which comprise hits to different parts of the underlying page),
and visits (which consist of page views of a user to the underlying site within a sin-
gle “clickstream” or session) have to be enriched by additional information about.
e.g., costs (to help site owners to monitor (un)successful site design strategies) or
further behavioral analyses of the data (to better understand the customer).

RECOMMENDER SYSTEMS IN THE INTERNET

apySoy ajdurexy :7 gy

WLN SMOpu S10'e FISIN) O F/RE0gy, e /e eynasprey-taniasiacggadngs / Sdagy, 2891 002 LT T/JALLH Fud'z/ 19, [0020+ Lr°5 00T/ wer/at
WLLN smopuig fpore FISI) O F/enzop, e q/apaynasprey-tancisiacggadnaa/ Sadang, 0201 002 L11/dLLH Bedd) 100, (000t LEsEE L1 1008/ vep /ot
LLN SMopuigy f10°¢ GISIN) 0 F/RIZ0IN . Juxed/apraynaspre-runc s ggadnga/ Sdiyg, 0022 002 .1 1/dLLH [Wa/ La., [0020+ Li=ge L1 1007/ uep /ol
WLLN smopuiy 100 IS 0 F/eizoy,, X /apraynaspaey-unc s pgodnga/ vy, P21 002 L1 T/dLLH e/ LA, [oozo+ zzor ‘Tooz/uer /ot
JLN SMOpUAY 100e AISIN) O F/RE0,, WX {/epraynispey-unciaime ggadnga/ fday g2 008 W1/ dALH ssoeBed)/ 1an . [0020 b 22 ee L1 1008/ vep /oy

- T ERONLGIEGT
- - EETONLGTEGT
- - EE0RLG1EGL
- - EEONLGT EGT
- = BEETORLGTEGL

LLLN sMoputyy f1o'e FISIN) 0T/ RMzoy . Jux-D/apaynspey-unciaacggadnga/ Sding, 6872 008 W11/ dLLH e H/ LA9, [00z0+ 1zee L1100z /ver /ot - - g808 461861
LLu3ygriog/wosjoqeBooi-mmm/ Sdan+) gfiogeiBoon -, 0942 007 L0/ ALLH 1A/ L30. [0020+ 10LE LT T00E/wer /aT] - - 88 LE°R0Z' 10

LN SMopmAy S 107g 1SN 0 R/ 2oy, Gueeg fepraynuspreg-an i gradnge/ Sdagy, 2691 002 W1 1T/ dLLH Fudz/ 150, [0020+ 98252 L1100/ wer /a1

LLLN SMOpmiAy S100g SISIND O F/Rze X g /apaynaspe-ime pascgzadnia/ fdyg ZeeT 002 LT T/JLLH W/ La0. (0020 + SesE L1 T00E/ wep /ot
J0r9/gedessian LOTTO00T/04231) 076/ /RIzofN, Juec H/ap-aynaspm-unctansegzadnga/ odiy, Rz 002 01/ dLLH (ue)/ 1a0, [00z0+ esez: L1 100e/ver/or
LN sMopuipy T0g HISIN 0 F/V(IZoN,, s D/ ep syaspe-unamisacggadnga/ Sdigy, PROZ 002 171/ dLLH WX g/ 139, 0020+ 9e1: L1 100z / ver /g1
LJro/usdessian 1011000/ 048 O'G/R|1Zo g, Jmx H/ap ayuispey-untisiangzadnga/ idasy , ¢28 002 01/ dLLH ss2a8ed/ 1o, [00R0+ E1EL1L151008/ ver /a1
L0'0/geduasion L0TTON0T/94290 06/ CIZo, Jux-D/apaqnaspre-uncpmiseggadma/ Sdan, 6812 002 .01/ dLLH 1 H/ LD, [0020+ @1-21:L1°1008/wer /91
L0°9/gadessian 101 TO00T/ 04295 XS /RIzop , [wx)/ apayuispij-run-imia-gzadngs/ Zdyy . opal 002 L0 T/ALLH WX/ LA, [0020+ 2291 L1:T00Z/wer /a1
LITX torg/aoaanbuoyp tapqnedines) grg/ejiopy, ux] /2p aqnasprey-uncimiacgzadma/ fdyy, opat 002 L0 T/dLLH X/ LaD. [00z0+ 92:21:L1: 1002/ uer /o1
LY 0 E/snbuoyy tepguindinon) gg/eizopy,, Jux {/ap anaspey-uniaisacgzadna/ Sdaag, opzl 008 L0/ dLLE (WX 130, oozod L1E v oo/ wep /ot

- - EE 0N L6TE6T
- - EEORLGTEGT
- - EE0RLGT EGI
= - BEONLGITEGT
= - EEOR'LGIEG]
- - BE 0N LGT £6GT
- - EEONLGT EGT
- - ETTTICET6ET
- - ETTETETGEL

Lpayeg/mosjoqadood amam /cdyy4) 1g/1ogeiBoon, -, 906 002 L0°T/dLLH 1Wx D/ L9, 0020+ 01 1:L1: 1002 /wer /91 - - ££/ 287802 +9

0'9/gadensian L01T000Z/ a0 0 g/eizaly , [wx D/ ap-aynaspey-iun-impacpzodnga/ dang, geel 00z L0 1/4LLH Judx/ 190, [0020+ 0L 1008/ e /gt
L0rg/gadeasian LOTT000T/ P90 (07s/Rzojy ., Jue g/apraynaspre-iun- s gzadnga/ sdyg, 906 002 .01/ dLLH 0/ La0. [0020+ €01 L1 1007/ 1er /o1
L0rg/gedessian LO1 10002/ 04995 0°6/21Z0W, . TFOZ 002 .0'1/dLLH [ux'g/ 1a9. [obzo+ 12-20:L1-1002/wey /o1

LTEX g/ aosanbuoy) fapquiedwos) grg/eqzopy,, i g /epauuspeg-un o ggadnga/ fidagy | £2¢ 002 01/ dLLH ssaa3ud/ 1an, (0020 12:00°L1: 100/ wey /ot

- - EEONLGLEGL
- - EEORL61 E61
- - BEONLGTEGT
- - ETTTIELGET

LY forgfroaanbuoy) apqredmon) prg/eipzop,, JuxD/apayuspey-iun-isiscggadma/ Sday, 6evg 002 L0071/ dLLH el LAOL [0020+ 12005011008/ ver /01 - - 837211621

Loy /modqogaiiood asm / di+) [z ogaiioon, -, FROT 002 L0 1T/ ALLH wxg/ 139, [0020+ rrawasiong/wer/at)

JLN smopumiay fTocs "SI) 00F/epRoy,, e Dfep apnaspreg-unctaimcgzadnia/ Sdang, 2e£1 007 L0 T/dLLH Sudx/ pan, [oogo+ goise91: 1008/ ver /ag
LLLN ssopuigy Sloce 1SN o' p/Rppzepy, mxy /ap aqraspisi-tun s gzadnia/ iding, 906 008 001/ dLLH XD/ 1a90. 0020+ zoiseot 1ooz/wep /ar

LJTIX og/1o1enbuoy taguedwos) grg/eppzopy, uxeD/apaynaspey-unciamcggadnga/aday, 2Rl 008 W01/ dLLH Fudo/ an, [0og0+ serowet ooz / el /ol
LLTTX forg/rosmnbuoy fepqpudmon) prg/eqrory [uex-gg fapraqnasami-tun-istscpzadma/ Zding, 9o 002 0 1/ dLLH ux 0/ La9., loogo+ peiower 1oos/ver/ar
LATTX torgfaomnbuoy Sspgqnedwos) grg/eipzopy, uned/apaguspei-unc s acggodngs/ Sdug, 8281 002 .01/ JLLH WX 4/ LA, 0020+ pEieco1: 1008/ wer /a1
LJLLN SMOPUIAL STO'S SISIND 0T F/eIzopy,, Juwex v /ap aynasjaes-un s gzadnga)/ Sding, €28 002 0T/ dLLH ssyadud/ 1o, (0020 + 90T 100g/ wer /o1

JLLN SmOpuiay t1o0s FISIN) o' p/eqpzopy , Sumnngam=b; Lanb /uwg-1Ba/apreisiaeije sam/ fiday 9621 002 L0 T/ ALLH Wy LAa0. loozo+ gregariong/ wer /gl
LTEX forgfaosanbuey fapquiedmed) grefeppEopy,, X g epeynasppey-un e ggadnga/Sdanyg . 2e01 002 01/ dLLH Sudz/ pan, (00204 2001911002/ wer /9
LN torg/aomanbuoy) tagquiedmon) gog/epzopy, oxg/apequaspsp-un e ggadnia/ fdayg, gee1 002 00T/ dLLH)/ pan. [oozo+ o0i e tong/ wer /o1

- - BEONTLGTEGE
- - ETECLUELGEL
- - RTTETET BET
- - ETETTELGTI
- - EEONLGIEGE
ONTLGTEGE
- - ETTTTEIGEl
- - ETTTIEIGTI

Lunyog/moesogagHooi-mam / dig 4) 1g/1ogaiioon, -, 8SZ1 002 L0 T/JLLH M0y / LA0. [0020+ 10:1S 011008 /Unp/91] - - £ LEROT 1O
Ltmmpieq/meo-oqaFood-smm/ Sdingd) 1z/0qa8005, -, 182 008 0°1/dLLH ¥ysoqor/ 199, [0020+ 260991 1002/ wer/91] - - £E° 28 80T F9

LAY fog/aotenbuoy fapgueduios) grg/ezopy, WXy /apasyraspey-unmiacgzadnga/ day, #ROZ 002 001/ dLLH exg/ LE0, 0020+ 2e:0¢01: 1002/ ver /o
ATIY g/ sosenbuoy] fSequedmns) gog/eizopy, uxey /aprsynaspe-iun pase ggadna) Sodyn, €28 008 W01/ dLLH ssoeded/ 1an, [0020+ osREeT1008/ ver /a1
L11X wrg/aoenbuoy taiquiedmon) grg/ezoly, -, RST1 00T L0 1/ dLLH 1w y/ 190, [oozo+ eorpor:100z/ver /o1

- - ETCEIEI6T]
i AT A A |
- - ETETIEIGZI

4 W. Gaul and L. Schmidt-Thieme

Besides information extraction possibilities as just mentioned these mountains
of data have an irresistible attractive power for the application of more sophis-
ticated mining activities (which is the topic of this paper). In the main parts
of the paper we will analyze web server log data on the basis of navigation path
reconstruction possibilities and present a new type of recommender system that
can handle this kind of navigational behavior patterns. In this context. the role
of web robots should be mentioned.

2.2 Web robots

Web robots, also known as crawlers or spiders, are software programs that
search the internet for the purpose of locating and retrieving information accord-
ing to the tasks for which they were developed (e.g., browsing assistants have
been designed to locate web documents relevant for their clients, hyperlink check-
ers are employed by web site administrators to test for broken links or missing
pages, search engines are used to build information bases. shop bots search for
price and quality information of goods or services to facilitate comparisons within
and between commercial site offers). While some site owners attempt to block
accesses by these robots, others perceive them as a means of attracting poten-
tial customers. In the context of this paper one has to face the problem that
the navigational behavior of internet users may be superimposed by web robot
navigational patterns when one tries to analyze web server log data.

Web robots may identify themselves in the user agent field of the HTTP-
protocol as shown in line 4 of Figure 1 (googlebot). A database with agent
names of robots, their tasks and owners can be found on The Web Robots Pages
(http://info.webcrawler.com/mak/projects/robots/ robots.html). Good natured
robots check the file robots.txt in the server root that allows server owners to
advise some or all robots not to access parts or all of the pages on the server. An-
other method to control robot behavior for HTML resources is the meta-tag: the
key robots may have assigned a value noindex and/or nofollow that specifies,
that a robot should not index this page and/or should not follow the links in this
page, respectively.

But as the name of the user agent stems from the client and a web robot
may camouflage itself and return the name of a browser like Netscape or IE as
user agent name, and as it is completely up to the client to respect site owners'
preferences or not, one has to prepare for malignant robots. Therefore, it is
desirable to identify web robots by their usage behavior instead of relying on the
information given by them on their (or their owners) free will. Typical navigation
behavior of robots in contrast to humans is characterized by a) not requesting most
of the auxiliary resources (like images and stylesheets that are uninteresting for
indexing), b) traversing the link graph of the site in a fixed way (e.g.. by breath
first search), ¢) requesting resources very fast (known as rapid fire, one of the
technical main problems caused by malignant robots) or d) requesting resources

RECOMMENDER SYSTEMS IN THE INTERNET 5

very slowly (which may cause problems with respect to user session recognition).
Even if the robot in the example logfile of Figure 1 already mentioned above would
not reveal itself by giving its name in the user agent-field and would not request
the resource robots.trt, one would suspect the entries to come from a robot due
to the missing requests for auxiliary resources (in line 5 the resource A.zml is
retrieved, but there is no follow-up request for the stylesheet page.css for that
resource). Older browsers not capable of CSS-stylesheets also may omit those
requests, of course, and users may advise their browser not to download images
automatically. so that patterns of navigation behavior typical for web robots can
only be taken as evidence but not as a proof (see Tan & Kumar, 2000, for an
empirical study of the navigational behavior of robots).

2.3 Reconstruction of user navigation paths

Contrary to straightforward information extraction deeper knowledge may be
gained by applying more sophisticated methods that often rely on the recovery
of the navigation paths. Many technical circumstances as requests missing in
logfiles due to client/proxy caching, non-unique ip addresses due to proxy usage
etc. make this a problem on its own, that is addressed by preprocessing of web
usage data; different aspects thereof are handled in Cooley et al. (1999) and
Gaul & Schmidt-Thieme, 2000. Here, we only point out additional possibilities
concerning navigation path completion.

Browsers cache resources locally after their first request and answer succeeding
requests of the same resource by delivering the local copy. As side effect, the server
hosting the resource does not see that the user has requested the resource again
and consequently the request is missing in the logfile.

When collecting requests and combining them to a tentative user path, most
of these situations can be detected as gaps in the tentative path: a resource is
followed by a resource that it is not linked to directly. Several heuristics have
been proposed to fill in this gap and complete the path:

Backtracking: Assuming that the user navigates only with the back button of
his browser, the gap is filled with resources of his navigation history until a
resource is reached that is linked directly to the next resource requested.

Optimal paths: The gap is filled with a connecting path that suffices some op-
timality criterion, e.g., the shortest path or the most common path.

Path fragments: The gap is filled with a wildcard symbol indicating that we do
not know the exact path the user took from one resource to the next.

The last possibility represents paths in a larger path space containing wild-
cards, that we will model as space of generalized sequences in the following. Fea-
ture extraction algorithms for ordinary sequences easily can be adapted to handle
this type of structures.

6 W. Gaul and L. Schmidt-Thieme

See Figure 2 for a simple example and Figure 3 for a reconstruction of the
logfile from Figure 1.

Figure 2: Site graph (solid arcs ———) with start path ABCD and path
prolongation to E via path completion ABCD(CBA)E by backtracking (dashed
arcs — ——), ABCD(CA)E by shortest path (dotted arcs »). as well as
ABCD*E as path fragment.

B+ - C — - D
/Ik AN % \
N i \ \\
(a) site graph
no, [client ip agent reconstructed paths

(by backtracking) (by shortest path) |(as path fragment)
129.13.122.23 | Konqueror /2.0 [ABEF (EB)CHLJ ABEF(B)CHLJ ABEF*CHILI
193.197.80.33 Netscape6 /6.0 | ACBE(BC)HI(HC)D | ACBE(BCYHI(C)D|ACBE*HI*D

3 1193.197.80.33 | MSIE 5.01 BCJ(C)HI BCJ(C)HI BCJI*HI

(b) analyzed paths

o ==

Figure 3: Example web site and example set of paths analyzed
with help of different path completion heuristics from the logfile in Figure 1

3. Path Features

Navigational behavior described by paths that users have taken on a site belong
to the most valuable information that can be gained. But paths as sequences
of resources of different lengths are complex objects which are not that easy
to compare and to use in data mining algorithms. Thus, one is interested in
determining sets of simpler features for path description (feature extraction).

Let R be an arbitrary set (the set of resources of a website). The set R* :=
Unen B" of all tuples of R is called the set of sequences of R and serves as basis
to model user paths.

A sequence p = (p1,...,pjp|) € R* describes a path as sequence of resources of
R. its length is denoted as |p|. Sometimes, we replace the tuple-notation by just
putting the corresponding resources one after the other, i.e., pip2--- p)y (see, e.g.,
Figures 2 and 3).

RECOMMENDER SYSTEMS IN THE INTERNET

o |

A substructure space of R* is defined as pair (A, <) of a set A and a relation
=< on A x R* where a € A is called substructure of p € R* if a < p.

5,: R*— {0,1}

. 1, ifa=p
¥ 0, otherwise
is called indicator function of substructure a. Examples of substructures for paths

p € R* are (where P(R) denotes the powerset of R):

1. sets (P(R), C) of resources, where a set of resources a € P(R) is defined to be
a substructure of a path p if all resources x € a occur in path p,

2. sequences (R, <n), where a sequence a € R* is defined to be a substructure of
a path p if it is a contiguous subsequence, i.e.. it exists ip € {0,... , |p|—|a[} with
a; = pig+i foralli=1,... ,|al,

3. generalized sequences ((R\U {*})*. <gen). i.€., sequences consisting of elements
of R and an additional symbol # used as wildcard, where a generalized sequence
a € (RU {*})* is defined to be a substructure of a path p if it is a generalization
of a (contiguous) subsequence of p and generalization means that arbitrary parts
of the sequence may be replaced by wildcards (see Gaul & Schmidt-Thieme, 2001
for an exact definition),

4. simple generalized sequences (R*, <n¢), where a (simple generalized) sequence
a € R* is defined to be a substructure of a path p if it is a noncontiguous subse-
quence with the following meaning: It exists j : {1,... ., |a|} — {1.... ,|p|} strictly
increasing with a; = p;;) foralli=1,..., la|, i.e.. in the context of generalized
sequences, if @y * ag * -+« * ajq) Sgen P-

The space of simple generalized sequences can be viewed as a subspace of the
space of generalized sequences where a wildcard is interspersed between each two
resources. Notice that in practical applications only generalized sequences without
a wildcard at the first and/or last position (i.e., a € (RU {*})* with ay.a), € R)
are of interest. These sequences are called path fragments.

For any substructure space A the symbol () describes the empty substructure
(i.e.. the empty set or the empty sequence, respectively) and |a| the substructure
complezity of a € A defined as cardinality (for sets) or length (for sequences).

Now. we can define a path feature to be a pair (®, @), where @ is an arbitrary
set called feature space and p : R* — @ the feature map mapping paths to features.
For a path p € R* we call ¢(p) the p-feature of p.

Trivial examples for path features are its length (¢ : R* — N,p — |p|) and its
entry point (¢ : R* — R.p — pi). More interesting features are obtainable via
substructures.

From an arbitrary substructure space (A, =) we derive its associated path
feature

¢: R*— {0,1}A

SREES)

8 W. Gaul and L. Schmidt-Thieme

L.e., a feature space that — for every path p — contains a binary vector indicating
whether an element a € A is a substructure of p or not.

Feature spaces based on substructures turn out to have the disadvantage of
high dimensionality: the feature space build from subsets has dimension 2181 the
one build from finite sequences (if subsequences are restricted to length n) has
dimension 377 [R|. Therefore — given an underlying (multi)set of navigation
paths S that has to be analyzed (where multiset denotes a sot with eventually
multiple membership of elements) — one is looking for interesting subsets of sub-
structures that result into a smaller number of dimensions but still carries as much
information as possible for a description of the objects of (multi)set S (feature se-
lection). We call a dimension sparse with respect to S if the corresponding entry
in the binary vector is zero for almost all paths of (multi)set S. In applications,
one often can drop a vast number of sparse dimensions and restrict to those di-
mensions for which the percentage of non-zero entries in the binary vector exceeds
a lower bound.

Dependent on this bound called minsup frequent substructures of the paths of
§ can be determined beforehand. For a substructure a € A one defines its relative
frequency

_ H{peSla=p}|
P =T

as support of a in §. The task to compute all frequent substructures, i.e., the
set @(sminsup) = {a € A| supg(a) > minsup} of all substructures with at least
a given minimum support minsup € Ry, is well known and accomplished by
the Apriori algorithm for sets (Agrawal & Srikant, 1994), sequences (Agrawal &
Srikant, 1995) and generalized sequences (Gaul & Schmidt-Thieme, 2001), re-
spectively. Building the feature space from the frequent substructures (s minsup)
only instead of using all substructures of A can reduce the dimensionality dra-
matically (depending on the minimum support and the structure of S . of course).
We call this feature space path features based on frequent substructures in general,
and, in particular, path features based on frequent subsets, subsequences, (simple)
generalized sequences or path fragments, etc.

4. Recommender Systems Based on Navigation Paths

A recommender system is software that collects and aggregates information
about site visitors (e.g., buying histories, products of interest, hints concerning
desired /desirable search dimensions or other FAQ) and their actual navigational
and buying behavior and returns recommendations (e.g.. based on customer de-
mographics and/or past behavior of the actual visitor and/or user patterns of
top sellers with fields of interest similar to those of the actual contact). These
recommendations have to be created in such a way that they are valuable for
browsers /customers/visitors as well as for site owners. Nowadays, recommender
systems are installed in more and more commercial sites to assist consumers in bet-

RECOMMENDER SYSTEMS IN THE INTERNET 9

ter/faster accessing useful information but also site owners in converting browsers
to buyers, in stimulating cross- and up-sales, and in establishing customer loyalty
as part of the activities to improve electronic customer care. — Recommender
systems have been studied extensively since Resnick et al. (1994) who used the
label collaborative filtering. An overview about applications of recommender sys-
tems in e-commerce can be found in Schafer et al. (1999, 2000) and an analysis
of some recommendation algorithms in Breese et al. (1998) and Sarwar et al.
(2000).

Beside such known approaches to designing recommender systems a new type
of recommender system has emerged that aims at helping surfers in navigating
the web. At each step in the navigation process recommendations based on the
up-to-now known navigation history are given concerning pages to visit next.
Recommender systems based on navigation paths thereby add to the static hy-
perdocument linking by expanding it to dynamically linked hyperdocuments.

Recommender systems based on navigation paths are useful in e-commerce
contexts as they try to make buying more pleasant for potential customers. As
major parts of an e-commerce site can consist of product catalogs and the presen-
tation of individual products, linking between such information can also be per-
formed by traditional recommender systems. The real strength of recommender
systems based on navigation paths becomes clearer in more or less unstructured
collections of information, as found in, e.g., news groups, message boards, web
directories, search engines and the like — provided that usage information within
those collections can be gathered and joined.

First roots of recommender systems for paths can be found in an adaptive
hypertext system of Stotts and Furuta (1991) that requires a special document
reader which can be advised to modify (attributes of) links already coded in the
documents with respect to usage behavior. The idea of developing recommender
systems based on standard HTTP-servers and the information in their logfiles
dates back to Yan et al. (1996), where a simple clustering algorithm is used
and the construction of recommender systems is described as dynamic hypertext
linking. Perkowitz and Etzioni (1998) build recommender systems based on co-
occurrence frequencies between resources and connected components of the usage
graph and call them adaptive web sites. Mobasher (2001) has investigated three
different approaches to compute recommendations by using sessions described as
sets of pages visited together (including visit times). His first approach is based
on association rules for sets, for a second alternative session clusters (computed
via the k-means algorithm) are needed. the third approach uses resource clusters
(computed by means of ARHP (association rule hypergraph partitioning)). —
Bodner and Chignell (1999) tackle the problem from the point of view of text
retrieval: they exploit the reference texts of visited links and keep track of a list
of relevant key words that is fed into a search engine; the results of the search are
linked from the keywords found in the active document. Joachims et al. (1995)
and Lieberman (1995) present WebWatcher and Letizia, two agents for web brows-

10 W. Gaul and L. Schmidt-Thieme

ing that are capable of giving recommendations depending on the users’ searching .
behavior so far; WebWatcher uses similarities in the link structure to identify
related documents, Letizia gathers additional data about user behavior (as book-
marking and usage of documents on different servers not available on server-side).
Fu et al. (2000) propose another agent that collects usage information of different
users in a central repository and computes recommendations from sets of pages
visited frequently together by means of association rules.

In the following we develop a framework for path based recommender systems
that may use a variety of different path features and cluster algorithms.

4.1 Prerequisites for recommender system evaluation

From a mathematical point of view, a recommender system based on navigation

paths is a map
r: R* — P(R) (1)

and the set 7(p) is called recommendation set for p € R*.

Starting point for an evaluation of such recommender systems is a (multi)set
of paths S. Each path p € S can be split at position @ € {1,....|p| = 1} in
a history hi(p) = (p1,....pi) and a future fi(p) = (is1s - Plpl)- Pi 18 called
recommendation point.

Now, a general definition for a recommendation quality measure can be given

by

q:R1XR2><R3 =% RH (2)
(h'w f,?") L Q(h,f,'f')

where R; describes the history space, R, the future space, and Ry the space of
(sets of) recommendations 7(h) derived from h € Ry. Various choices of Ry, Ry,
and Ry are possible. We will restrict to Ry = Ra = R* and Rz = P(R), in the
following.
g(h, f.r) measures the quality of recommendations (e.g., by choosing h = hi(p)
and comparing r = 7(hi (p)) with f = fi(p) for a path p).
Simple examples of recommendation quality measures are

g(h. f.r) := |{y € rly occurs in I (3)

which is just the number of recommended resources that also occur in f, or

glh. f.r) =Y alhpp: £+9) (4)

yerih)

where §: Rx R* x R — Ry describes a measure that depends only on the
recommendation point hp| and evaluates the degree of conformity between f and

RECOMMENDER SYSTEMS IN THE INTERNET 11

a single recommendation y € r(h). i.e.. the quality measure does not take into
consideration any compound effects as, e.g.. preference of resources concentrated
in a particular region of the site over those scattered all over the whole site.

Recommendation quality can take into consideration the distance between his-
tory resources and recommended resources (measured with the help of the under-
lying site graph structure or, alternatively. defined as minimal number of resources
between recommendation point and recommended resource in the actual future
of a path), e.g., for 2.y € R and f € R* (e.g.. with = = p;.y € r(hi(p)). and
f = fi(p) for a path p € R*) one can define

u(dist(z,y)) ,if y # x occurs in f

4(z, fy) = { 0 ,otherwise (5)

where dist denotes an appropriate distance function and u measures the utility
assigned to the distance between pairs of resources. The meaning is that resources
in the direct neighborhood of a recommendation point are easier to find (and, thus,
to recommend) than adequate resources far away. Examples for utility functions
are

u:Ry — R{

1 hit count
d d linear scale
logd + 1 logarithmic scale (6)
(d —dy+1)d)4, 4,(d) window effect
. 1, de [dl)s dl]?
with 0(g, 4,)(d) = { 0, otherwise

Up to now, recommendation quality measures as depicted in (3), (4) are re-
stricted to a single navigation path but, of course, for a given recommender system
r, a recommendation quality measure g, and an underlying (multi)set S of navi-
gation paths, one can define, e.g.,

QPM(8) =Y > alhi(p). filp). 7 (hi(p)))

as raw recommendation score for v relative to §. Let
o (S) = max Q™ (S)

be the (theoretically) mazimal recommendation score (relative to a given quality
measure ¢); see Section 4.2 for a simple method to compute Q3% (S) for a given
test set §. Then, one can define

Qr(S) = Q™ (8)/Qmax(5)

12 W. Gaul and L. Schmidt-Thieme

as normalized recommendation score, which is a useful characteristic number for
the comparison of the performance of a recommender system on different test sets
or of different recommender systems on the same (multi)set S.

Now, the problem to find an optimal recommender system can be formalized as
follows: given a quality measure g construct a recommender system r on the basis
of information from a training set S®®" of paths so that the raw recommendation
score of r on a test set S'*t of paths (not used for building the recommendation
system) is maximal.

For the simple recommendation quality measure (3) that just counts the num-
ber of conformities between resources of r and f, apparently, the optimal recom-
mender system is the system that simply recommends all resources for any given
history: for sure, this recommendation set will hit all resources in the future and
be of no interest whatsoever. T'wo kinds of modifications are possible to make the
problem more interesting:

1. Modify the recommendation quality measure. For instance, one may think
of counting the number of hits relative to the number of given recommenda-
tions. While optimal recommendations for the simple quality measure (3)
consist of large recommendation sets, optimal recommendations for the rel-
ative number of hitting recommendations have very small recommendation
sets: in almost all cases for each history only the one resource with high-
est follow-up probability is selected and all other resources with lesser but
perhaps also high probabilities are discarded.

2. Restrict the space of possible recommender systems by imposing additional
constraints. A restriction that always ever is sensible in practice is to allow
only recommendation sets of a given maximal size (i.e., r(h)| < n for all
h € R* and a given n € N). This constraint forces a restriction to the best
n recommendations; in practice, n will be a small number. say 3 up to 5, of
recommendations that users may be willing to look at. — Thus, one may
specialize the problem of finding an optimal recommender system to the
construction of an optimal one among a predefined class of recommender
systems (e.g.. those with at most a given number of recommendations per
history).

For paths in a (sparsely linked) graph the computation of recommendations
with respect to a quality measure based on hits (disregarding distances of recom-
mended resources) will — in most cases — still result in a set of resources directly
linked to the recommendation point. Here, we use the idea of Mobasher (2001)
to weight resources farther apart higher by choosing an appropriate quality mea-
sure depending on the distances of the recommended resources. Of course, utility
functions — when used for modeling different problems — may depend on other
parameters besides distance as well.

RECOMMENDER SYSTEMS IN THE INTERNET 13

4.2 Different types of recommender systems

As the preceding discussion has shown, a variety of optimality criteria for
recommender systems can be designed on the basis of appropriate choices of ¢
and optional restrictions for 7. Here, we start with some obvious possibilities to
typify recommender systems.

As normally the number of collected navigation paths is very large compared
to the number of resources of the underlying site, we may break down the global
problem of finding optimal recommender systems for a whole site into a set of
smaller subproblems of constructing optimal systems for each single resource. We
split R* for x € R into spaces R} = {p € R* |pp = x} that consist only of
sequences with = at the last position and call

7z : RE — P(R) (7)

a local recommender system at resource zin contrast to the global version described
by (1). Accordingly, the training set S'™® for the global system is transformed
into training sets Si™" C R} x R* for the local systems that consist of all navi-
gation paths p split at (as recommendation point, if p contains x); in the case
that a resource z appears k times in a path p € S'"" then S'™i" contains k
replications of p split at each occurrence of recommendation point . — Once
that optimal local systems for all € R have been found, they can be pieced to-
gether to a global system r : R* — P(R) by delegating the recommendation task
to the appropriate local model, i.e., r(h) := Thy, (h), as there is no dependency
of the recommendations given at one recommendation point upon those given at
another recommendation point.

We further distinguish between static and dynamic recommender systems:
static recommender systems do not take into account the former navigation his-
tories of users and provide a static set of recommendations for all visitors, while
dynamic recommender systems may depend on the histories and provide different
recommendation sets for users with different histories. Dynamic systems may be
build by first partition the histories of the training set S"*" and, then, compute
a static system for each class.

Training and test sets for static (local) recommender systems can be described
as (multi)sets of futures F; C R*, extracted from SI™" via F, := {f € R*|3h e
Ry : (h,f) € S™*in}. A simple recommender system just counts frequencies of
resources y € R in the future paths via

freq(y) = |{f e F;,g l'y occurs in f}!

and recommends the n most frequent ones. Up to now, no utility functions have
been taken into consideration. To do so, one has to sum up the utility values for
all resources in the future paths, e.g., for the distance sensitive utility functions
within (6) one computes the weighted frequencies

wireq(y) = Z g(z. f.y)

fEF;

14 W, Gaul and L. Schmidt-Thieme

and, again, selects the n highest valued follow-up resources. Note that the com-
putation of the weighted frequencies depends on the recommendation point z, but
the recommendation set itself does not, thus, a static recommender system is gen-
erated. By construction this is the optimal system among all static recommender
systems at x.

Dynamic (local) recommender systems make use of a history partition C =
{Cy,....Cn} of (asuperset of) all histories h € R in the test set (where m € N
is the number of classes). The test set S'*' can be partitioned into test sets
S'st| = {(h, f) € §'' |h € C} for each class C' € C and a static recommender
system can be build for each such class.

While the use of ordinary partitions is straightforward, fuzzy partitions need
additional information about predicted utility values for recommendations given
by the static recommender systems for each class. Now, let C = {wy,... ,wn} be
a fuzzy partition of the histories, i.e., all w € C are functions w : R* — [0,1] with
Swec w(h) =1 for all h € R*. w(h) is called weight of h in class w. The static
recommender systems for each class w have to provide a predicted utility value
for each recommendation, i.e., they are maps

rw: R* — [0,1]7
A (rw(h): R — [0,1])
y = rw(h)(y)

with recommendation set
rec(h) := {(y,v) € R x [0.1] |y € R with v := 7y (h)(y) > 0}

To yield recommendations for a given history h a dynamic recommender system
using fuzzy partitions, first, computes the weights of h for all classes w, second,
computes for all classes w with w(h) > 0 the (extended) recommendation set
ru(h). third, adjusts the predicted utility values by the weight w(h) for the class
the recommendations stem from, and, then, chooses the n recommendations with
highest (adjusted) predicted utility.

A trivial example for a dynamic recommender system is the one build upon
the singleton partition C = {{h}|3f € R* : (h,f) € S}, that we call rec-
ommender system based on finest history partition. As each difference between
histories results in different classes, this recommender system extremely suffers
from overfitting and therefore performs very poorly on test sets. But beside the
fact that the recommender system based on finest history partition is a trivial
example for a dynamic system. it can be useful for the computation of an upper
bound for the raw recommendation score (that can be achieved by any recom-
mender system on the underlying test set). if it is trained by the test set (!) itself,
i.e.. the raw recommendation score of the recommender system based on finest his-
tory partition for a test set §' is the theoretically mazimal raw recommendation
score Q'™ (S'*S'). As the history describes all the information a recommender

RECOMMENDER SYSTEMS IN THE INTERNET 15

system has to base recommendations on, the computation of a recommendation
set for each such history is the finest possible system that will achieve the best
possible score.

The computation of Q}5Y, requires the building of a huge amount of static rec-
ommender systems (one for each history), that either may consume a considerable
large amount of memory or forces several iterations over the test set database.
Alternatively, a more pessimistic upper bound can be computed by choosing the
best recommendation for each very history in the test set in a single loop over the
test set database. Note that this may result in different recommendation sets for
the very same history and, thus. may never be achieved by a real recommender
system. But for test sets with many different histories and a decent quality func-
tion this bound is close enough to QY. As in our experiments in Section 5

max*®
runtime has not been considered, we use exact values for Q% .

stalic Jocal rec nr‘mln-mh'l syaleIns

vecaninendatjons

for cliss 1

| ' + recommmetidations
delegate on for ¢luss 2

f
| k 4 Y 1 weight and |
/] class weights [+ select best o [N i

1
I
'
|
|
i
1
|
|
i
1
|
|
/ . - \ '
| reconimendations } 1
/1 fur rlass .. I |
for b= A7 ! ! i
i U dvnimic loenl reconumender svsiem ai A ! 1
b T e S M o I et A G PP e T S = P a \
i i
] / |

elegate on
i] | e andlati

) B Fecommendation

Juistory b, yecommendation '
H " ¥ wer rili)
1 proint by i
1 1
| \ S R R |
G |
for hpy = N ! - | |
I !] Il‘t'l'lllll\ll‘lllllllllll\N [, I
' ! for class | I/ 1
| \ A |
\ 1 —————— 7\]
. h B | reconnnendations \ /o H
1 1y delegite on e for class 2 © o4 weight and [/ | 1
! | el weighits [selert hest o i \
1 [~ : J 1 I
1 ! 1 1
] i 1 [, i '
| recommendations) |
! | low class ., | [
1 I i I
L dynamie focal werommender svstem at N o4 ‘
] D S S e s e]
" dviaimic glol Ny ieles i ‘
wainic global reconmmmender system

Figure 4: Architecture of a dynamic global recommender system

Obviously, both, localization (i.e., the determination of local systems) and the
usage of history partitions can be viewed as application of a clustering technique
to the histories of paths in § that — based on an adequate similarity criterion for
navigation paths — reduces the global problem to the handling of subproblems
described by more homogeneous sub(multi)sets S|¢c, where C' denotes the class
under consideration of the resulting (possibly fuzzy or overlapping) classification.

16 W, Gaul and L. Schmidt-Thieme

Of course, one can combine these possibilities and apply history partitions to
Sz. resulting in S|, or split 8| into subsets of navigation paths with same
recommendation point z. resulting in (S|¢),. Note, that while localization uses
very intuitive classes that do not have to be computed, the hard part of history
partitions is the computation of the partition itself. Therefore, one first applies
localization and afterwards computes history partitions for each local system. An
overview of the architecture of such a complex system is given in Figure 4.

4.9 Recommender systems based on frequent substructures of navigation histories

Frequent substructures of the histories at a resource r can be used to build
fuzzy partitions for dynamic local recommender systems. For a local training set
S C R? x R* at a recommendation point x € R let H, := {h € R%|3f ¢
R* : (h,f) € S'™in} be the (multi)set of corresponding histories. Let D, =
P(H, minsup) denote the set of frequent substructures of H,. For each frequent
substructure a € ®, we build a class represented by the weight function w, :
R; — [0,1]. Note, that the empty substructure §) occurs in every history by
definition and, thus, is frequent in any case; it serves as class for histories without
any frequent (non-empty) substructures. For h € R} let ®(h) denote the set of
frequent substructures occurring in h (including @). The class weight functions
wy are then defined as

v(a)
wq(h) = Cocom 8 for a € ®(h)
0

otherwise

where v : @, — R{ is a function that measures how specific or interesting a fre-
quent substructure is. » might be set coustantly to 1 (not making any differences
between different substructures and. thus, weighting them all equally), it might
consider the frequency of a substructure and be set to the inverse of the support
Ew_l,['a_l‘ or it might consider structural information of a substructure and be set

to the complexity |a| of a frequent substructure. We will use the second variant
in our experiment in Section 5.

Alternatively. one can assign histories only to classes representing maximal
substructures. Let PM®(h) be the set of maximal frequent substructures of h
(especially {0}, if there are no frequent substructures at all) and compute w,
with @™(h) instead of & h).

Partitions based on frequent structures tend to become rather large for small
minimum support values. A pruning step can decrease the number of interesting
frequent substructures before the partition is formed and static recommender
systems for each class are build, For any frequent substructure a € ®,. all more
specific substructures b € @, (e.g.. supersets, supersequences, etc.), that have the
same support, can be removed: as identical support values will lead to the same
class weights and as both frequent substructures a and b have the same training
sets, i.e., lead to the same static recommender system, they would create the very

RECOMMENDER SYSTEMS IN THE INTERNET 17

same recommendations, and, consequently, the system for b is superfluous. The
reader acquainted with the notion of closed subsets in the theory of set based
association rules will see the analogy between this pruning step and the search
just for closed subsets (see, e.g., Zaki & Hsiao, 1999); but note, that while closed
subsets are the most specific ones among all subsets with same support, here —
by contrast — we keep the most general ones among all substructures with same
support.

5. Examples and Experiments

After the theoretical outline we present a series of small examples to illustrate
the capabilities and shortcomings of the different kinds of recommender systems
based on navigation paths before an experimental evaluation is described with
the intention to provide a feeling for the advantages obtainable by application of
path features.

A utility w: 12 3 4
wa: 1 1.7 2.1 924
/ I \ path history future
Vs PiI: ABC F E B
I I v I Prir: AC F D ¢ D
E+—+F+— G Prv: ABC D G F E
a) site graph b) paths of example 1
utility uy: 12 3 utility u: 12 3 4
wp: 1 1.7 21 ug: 1 1.7 21 24
path history future path history future
pv: BAC D F G Prx: BAC D F G
VI ABC F E B Px: ADFEBC F E B
PVII: BAC F D @G PXI: BAC F D G D
VI ABC D G F PXII ABC D ¢ F E

¢) paths of example 2

Figure 5: Site graph and sample paths of examples 1. 2, and 3

Figure 5 shows the link graph of a small site of seven resources R
F.G} and three examples of navi

dation point C. The

paths differ with res
remain unchanged in the different exa
recommendation (n = 1)

d) paths of example 3

= {A,B.C.D.E,
gation paths that are all analyzed at recommen-
pect to their histories while their futures
mples. For simplicity, at most a single
is provided for comparisons,

18 W. Gaul and L. Schmidt-Thieme

We start with example 1 and assume that the underlying system is static and
that & = {pr.prr.prrr.prv} is the (multi)set of navigation paths under consid-
eration. Without using utility functions one just counts occurrences of resources
following C: F is the only resource occurring in all four futures and, thus, a rec-
ommender system based on mere frequencies would recommend F. Now. we add a
utility distance uy(d) := d or us(d) = logd+ 1, respectively: the utility values for
the resources following C are given in the upper two lines of the tables. Using util-
ity sums, the recommender system based on weighted frequencies now computes
the wu)-utility sum 7 for F and the uj-utility sum 8 for G or the ug-utility sum 5.8
for F and the wuo-utility sum 5.9 for G and — in both cases — would recommend
G instead of F. If a resource occurs more than once in the future path (as D in
path pyr;) only the first occurrence (shortest empirical distance) is counted.

The recommender system based on finest history partition recovers two history
classes {A} and {A.B}. For class {A} the recommendation G with u;-utility sum
6 (or up-utility sum 4.2) is computed. for class {A B} recommendation E. also
with u-utility sum 6 (or us-utility sum 4.1), is found, resulting in a theoretically
maximal possible recommendation score of 12 for uy (or 8.3 for us). Thus, the
normalized recommendation score of the recommender system based on mere
frequencies is 7/12 = 0.58 for u; (or 5.8/8.3 = 0.70 for uy) while for the system
based on weighted frequencies it is 8/12 = 0.66 for wj-utility summation (or
5.9/8.3 = 0.71 for us-utility summation). This part of our small example was
designed to show that the incorporation of utility distances (other utility functions
are thinkable) leads to the recommendation of resource G farther apart from
recommendation point C instead of resource F directly linked to C.

Now we apply the recommender system based on frequent subsets with minsup
= 0.5 to example 1. The two frequent subsets {A} with support 1 and {A B} with
support 0.5 are found and lead to a fuzzy partition with 3 classes. For the static
recommender system based on weighted frequencies that takes into account all
histories containing {A} all four paths are used and consequently G is computed
as best recommendation (the same as for histories containing (), for the same
system that, now, takes into account all histories containing {A,B} only the paths
pr; and ppy are used, so that E is computed as best recommendation. Thus, the
recommender system based on frequent subsets achieves a recommendation score
of 1.0.

Next, we take example 2 which is a slight modification of example 1: paths
pv and py g now start with BA (instead of A as py and py did). Consequently,
the recommender system based on frequent subsets recovers only one class of
histories {A.B} and, thus, will achieve the recommendation score of 0.70 only.
The recommender system based on frequent subsequences still can distinguish
between subsequences AB and BA of the histories and achieves a recommendation
score of 1.0 again.

If we, now, look at example 3 in which only the history of path py was changed
compared to path py; of example 2 by inserting a deviation DFE between A

RECOMMENDER SYSTEMS IN THE INTERNET

and BC in the history, the extraction of frequent contiguous
result in BA only and a distinction between the
would not be possible. But the recommender syst
subsequences (or path fragments)
generalized sequences A * B and B
give better recommendations.

Finally, our findings have been checked on a larger (multi)set S. Table 1 shows
the result of an experimental evaluation of some of the different recommender
systems based on navigation paths as described earlier. We modeled four different
classes of users navigating a small site of 20 resources (A-T). On the basis of
an abstract description of user classes (percentage of total users, templates of
navigation behavior, distributions of variations etc.) we created a database of
10.000 navigation paths, 90% of the paths were used as training set Strain ¢,
build the models, the remaining 10% of the paths as test set 8" to evaluate the
quality of the models and compute the recommendation scores, We used the utility
function u; and allowed only a single recommendation at each resource (n=1).

As expected, the use of simple frequencies (model freg) resulted in a low global
recommendation score of (.41, for the local versi

(.15 at some of the resources. Using this as b
frequencies (wfreq) that takes into conside
funetion achieves an overall improvement in global quality of over 50% (global
recommendation score 0.64). As we put strong sequential effects in the navigation
patterns of the different user classes, dynamic recommendations based on frequent
sets (sets) do not result in a better global score (0.65), but using sequences (seq) or
even better simple generalized sequences (sgseq) or path fragments (frag) further
improvements of the global recommendation quality were possible (by another
32% with respect to the baseline score (see the global recommendation scores of
0.69, 0.76, and 0.77. respectively)). In all cases, the frequent substructures for
the dynamic models have been extracted with a minimum support of 0.2.

The local quality scores show that not in all cases (
tion points) the same ranking as for the g
can be observed. This is due to the fact that at some rec
sequential effects were not strong enough in the da
svstems based on path substructures could not t
path features, and /or due to the choice of the same
recommender systems, that is
the local systems.

subsequences would
two classes found in example 2
em based on simple generalized
is able to separate the two frequent simple
A in the histories of example 3 and can, thus.

aseline, the model based on weighted
ration the special form of the utility

i.e., at all recommenda-
lobal recommendation quality values
ommendation points
ta so that local recommender
ake advantage of some of the

minimum support for all local
responsible for small overfitting effects in some of

w. Gaul and L. gehmidt-Thieme

20

gL 980 6L°0 08’0 ¥L0 gL 180 60°0 GL'0 LU0 080 6L°0 €L ¢g'0 080 8L0 2070 99°0 LLO 096°0|LL0 geyy

e10 €80 6L°0 6L°0 €40 oL'0 780 890 €40 9L0 0,°0 8L'0 €0 ¢80 080 110 8970 £9°0 LL°0 960 9L°0 basis
o0 1L°0 290 L9°0 890 660 FL0 o0 €90 120 000 FL'0 L9°0 TLO €40 g10 89°0 850 1.0 88°0 69°0 bos
g0 69°0 190 79°0 950 20’0 690 840 95°0 690 9'0 $O°0 290 19°0 850 ¢)°0 90°0 G50 120 1870 o' 5908

.gaanjonIsqns qyuanbaij 1o paseq ga)sAs IOpUAUIII0ddT orurguAp
760 L9070 190 890 950 260 090 €90 19°0 L0 Go'0 790 L90 840 840 L0 9970 Lg'0 69°0 880 790 Donm
0g'0 LT'0 €50 §T°0 050 ce0 LG0 860 810 VIO 130 860 Lo°0 9T0 850 9E0 Zp0 LG0 1€°0 120|1V0 boxy

1S SAS JopuauIIodat o1pe)s

| T

a 4 a 9 aqa Vv Sn0IN0sal

G0 G000 GO0 S0 _S0°0 co'0 G0'0 800 L0°0
L S gy O d o N N 1T M r I H

D

FARY yoddns o v pasi saInjansqns quanboly 1o
paseq gruajsks 1opuaTIIIoNdl e L(foaf) gymauidey] yed yuenbalj 1o pastq ‘g'1 pue “ (basbs) gapuanbasqns —EE.E.S:% opdurs
quenbaxy uo paseq g1 *(bas) gaouanbosqns juanbaiy uo paseq -g1 *(s728) s1OSqNS juanbalj WO Paseq g1 *(baufm) satouanboty
ponSom U0 poseq "1 ‘(baf) qutod HOT)RPTTITIOA (renyoe) 2 FUIMO[[0} SO j0 garpuanbaty uo poseq sl spayRn[eAd
are (s1) SISAS TOPUAII0IL Fuimo[[o} 2L oAl St Aypenb o1} yutod HO1YRPUATITIONST ge J, @2anosal 0 dn y 22In0sal
[y RISAS JOPUAITIONAT [ES jo syred [p20] a1]) 10] SN (S R CLIRRANT | -I01SAS JopuaTIoNal e 10§ Lypenb QO PIATIIIOA
[eqols ot soa1d pqo1h oo SNL eqep ed 2 ui 201nosal e JO gaoTa1Inan0 Jo oFejueniod o1} soqLIsIP syyfitam
mor oL (1) gopInosal (g Yy 218 [ews B 1O SuIRSAS 19PUANITIONT Jualofip 30 MOTJRIRAD Ea:m::.bixm 1 9lqeL

RECOMMENDER SYSTEMS IN THE INTERNET 21

6. Outlook

A framework for recommender systems based on navigation paths has been
presented and the influence of different path features on recommendation quality
considerations was theoretically discussed and empirically demonstrated. We de-
veloped a generic method to measure the quality of recommender systems in terms
of a the (normalized) recommendation score, S0 that different systems can easily
be compared, and gave examples for recommender systems based on navigation
paths that made use of frequent substructures in the path histories.

Future work should address questions as pruning based on substructure par-
titions. automatically finding optimal support values, as well as comparing our
results to those of history partitions obtained by approaches different from fre-
quent substructures. Beside theoretical work on mathematical modeling of rec-
ommender systems an empirical evaluation of how they are used (and liked) by
site visitors is one of the urgent questions in the field.

REFERENCES

Agrawal, R. & Srikant, R. (1994). Fast algorithms for mining association rules. In Boccea,
1. B., Jarke, M., & Zaniolo, C. (Eds.), Proceedings of the 20th international con-
ference on very large data bases (VLDB'94), September 12-15, 1994 (pp. 487-499).
Santiago de Chile, Morgan Kaufmann, Chile.

Agrawal, R. & Srikant, R. (1995). Mining sequential patterns. In Yu, P. S. & Chen, A. L.
P. (Eds.), Proceedings of the eleventh international conference on data engineering,
March 6-10, 1995 (pp. 3-14). Taipei, Taiwan, IEEE Computer Society.

Bodner, R. C. & Chignell, M. H. (1999). ClickIR: Text retrieval using a dynamic hyper-
text interface. In Proceedings of the seventh text retrieval conference (TREC-T).
Gaithersburg, Maryland.

Breese, J. S., Heckerman, D., & Kadie, C. (1998). Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the fourteenth conference on
uncertainty in artificial intelligence, Madison, W1, July, 1998.

Cooley, R., Mobasher, B., & Srivastava, 1. (1999). Data preparation for mining world
wide web browsing patterns. Journal of Knowledge and Information Systems 1/1.

Fu, X., Budzik, J., & Hammond, K. J. (2000). Mining navigation history for recommen-
dation. In Proceedings of the 2000 international conference on intelligent user
interfaces, (pp. 106-112). New Orleans, LA, January 2000. ACM.

Gaul, W. & Schmidt-Thieme, L. (2000). Frequent generalized subsequences — A prob-
lem from web mining. In Gaul, W., Opitz, O.. & Schader, M. (Eds.), Data analysis,
scientific modeling and practical application (pp. 430-445). Springer.

Gaul, W. & Schmidt-Thieme, L. (2001). Generalized association rules for sequence and
path data. To appear in Proceedings of the 2001 IEEE International Conference
on Data Mining (ICDM’2001).

Hallam-Baker, Ph. M. & Behlendorf, B. (1996). Extended log file format.
http:// www.w3.org/TR/WD-logfile.html.

22 W. Gaul and L. Schmidt-Thieme

Joachims, T., Mitchell, T., Freitag, D., & Armstrong, R. (1995). WebWatcher: machine
learning and hypertext. In Morik, K. & Herrmann, J. (Eds.), GI Fachgruppentreffen
Maschinelles Lernen. University of Dortmund, August 1995,

Lieberman, H. (1995). Letizia: An agent that assists web browsing. In 1995 international
Joint conference on artificial intelligence. Montreal, CA, 1995,

Mobasher, B. (2001). Mining web usage data for automatic site personalization. To ap-
pear in Gaul, W, & Ritter, G. (Eds.), Classification, automation, and new media.
Springer.

NetGenesis (2000). E-Metrics, Business metries for the new economy.
http://www.netgenesis.com/emetrics /.

Perkowitz, M. & Etzioni, O. (1998). Adaptive web sites, automatically synthesizing web
pages. In Proceedings of the fifteenth national conference on artificial intelligence.
Madison, WI.

Resnick, P., lacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an
open architecture for collaborative filtering of netnews. In Proceedings of the confer-
ence on computer supported cooperative work, Chapel Hill NC, 1994 (pp. 175-186).
Addison-Wesley,

Sarwar, B., Karypis, G., Konstan, J. A., & Riedl, J. (2000). Analysis of recommenda-
tion algorithms for e-commerce. In ACM conference on electronic commerce (EC-
00).

Schafer, I. B., Konstan, J. A., & Riedl, J. (1999). Recommender systems in e-commerce.
In ACM Conference on electronic commerce (EC-99) (pp. 158-166).

Schafer, J. B., Konstan, J. A., & Riedl, J. (2000). Electronic commerce recommender
applications. Journal of Data Mining and Knowledge Discovery. vol. 5, nos.
1/2. 115-152.

Stotts, P. D. & Furuta, R. (1991). Dynamic adaptation of hypertext structure. In Third
ACM conference on hypertext proceedings. Association of Computing Machinery.

Tan, P-N, & Kumar, V. (2000). Modeling of web robot navigational patterns, In Work-
shop on web mining for e-commerce — challenges and opportunities (WebKDD
2000). August 20, 2000. Boston, MA, USA.

Yan, T. W., Jacobsen, M., Garcia-Molina, H., & Dayal, U, (1996). From user access
patterns to dynamic hypertext linking. In Fifth international world wide web con-
ference, May 6-10, 1996, Paris, France.

Zaki, M. & Hsiao, C.-J. (1999). CHARM: An efficient algorithm for closed association
rule mining. RPT Tech. Report. 99-10.

Received February 2001. Final version accepted October 2001.

